Rapid Detection of *Mycobacterium tuberculosis* by Cartridge-based Nucleic Acid Amplification Test in a Rural Tertiary Care Hospital in Khanpur Kalan, Sonepat Haryana

Sumit Kumar¹, Surinder Kumar², Raminder Sandhu³, Seema Garg⁴, Pallavi Kumari⁵

¹Associate Professor, Department of Microbiology, Bhagat Phool Singh Government Medical College (Women), Sonepat, Haryana, India, ²Professor and Head, Department of Microbiology, Bhagat Phool Singh Government Medical College (Women), Sonepat, Haryana, India, ³Associate Professor, Department of Microbiology, Bhagat Phool Singh Government Medical College (Women), Sonepat, Haryana, India, ⁴Assistant Professor, Department of Microbiology, Bhagat Phool Singh Government Medical College (Women), Sonepat, Haryana, India, ⁵Associate Professor, Department of Physiology, Post Graduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India

Abstract

Introduction: Tuberculosis (TB) is a major public health problem the infection affects up to one-third of the world population. Early diagnosis is needed for early patient management and successful patient treatment. The TB situation is worsened by the emergence and spread of multidrug resistant (MDR) TB cases. Mycobacterial culture is considered as the gold standard but is slow and usually takes 2–6 weeks’ time to get the final result. Cartridge-based nucleic acid amplification test (CBNAAT) can detect TB along with rifampicin resistance in <2 h. This study was done to detect MDR TB by CBNAAT machine in a rural tertiary care hospital.

Materials and Methods: In the present study, samples presumptive of TB since February 2018 to July 2019 were subjected to CBNAAT for the diagnosis of rifampicin resistance.

Results: In the present study, total number of 3281 presumptive TB samples was tested by CBNAAT. Out of 3281 presumptive TB samples, 963 (29.35%) were *Mycobacterium* positive and rifampicin sensitive and 66 (2.01%) were positive for *Mycobacterium tuberculosis* and were rifampicin resistant. *Mycobacterium* was not detected in 2252 (68.64%) cases.

Conclusion: Detection of rifampicin resistant TB by CBNAAT is done within few hours. Consequently early diagnosis of TB patients helps in early and precise treatment and prevents transmission of MDR strains of TB in the community.

Key words: Cartridge-based nucleic acid amplification test, Multidrug resistant, Rifampicin, Tuberculosis

INTRODUCTION

Tuberculosis (TB) is a major public health problem the infection affects up to one-third of the world population, and almost 2 million people are killed by TB each year.¹ India is the highest TB burden country in the world. The global incidence of multidrug resistant (MDR) TB is 630,000 cases. India have one-tenth of the global burden with 64,000 cases.²

Early diagnosis is needed for early patient management and successful patient treatment. The TB situation is worsened by the emergence and spread of MDR TB cases, defined as simultaneous resistance to at least rifampicin and isoniazid, with or without resistance to any other drug. False-negative results and misdiagnosis of TB suspects are common in developing nations, as most TB control programs use Ziehl-Neelsen smear microscopy, which has poor sensitivity and multiple visits are required that leads to higher default. Mycobacterial culture is considered as the gold standard but is slow and usually takes 2–6 weeks’ time to get the final result and it requires proper infrastructure and technical expertise.³

In December 2010, WHO recommended use of a new Cartridge Based Nucleic Acid Amplification test
(CB-NAAT), named GeneXpert system. The Xpert MTB/RIF assay employs five distinct molecular nucleic acid probes, each labeled with a differentially colored fluorophore and responding to a specific nucleic acid sequence within the rpoB gene of *Mycobacterium tuberculosis*. It can detect TB along with rifampicin resistance in <2 h.[4]

CBNAAT technique is not liable to cross-contamination; it requires minimal Biosafety facilities and has a high sensitivity in smear-negative pulmonary TB. The diagnosis of extrapulmonary TB (EPTB) is often difficult to establish, because number of bacteria in the specimens is often very low and collection often requires invasive procedures, and it is not easy to obtain multiple samples. GeneXpert is a useful tool for extrapulmonary specimens.[8]

This study was done to detect MDR TB by CBNAAT machine in a rural tertiary care hospital.

MATERIALS AND METHODS

Inclusion Criteria
Patients with clinical suspicion of pulmonary TB including symptoms of cough with or without expectoration for >2 weeks, weight loss, fatigue, hemoptysis, and loss of appetite were included in the study.

Exclusion Criteria
The following criteria were included in the study:
1. Samples received without clinical history.
2. Patient with history of lung malignancies or fungal infections.

This study was done at rural tertiary care hospital. The study was conducted in the department of microbiology for 1½ year. In the present study, samples presumptive of TB since February 2018 to July 2019 were subjected to CBNAAT for the diagnosis of TB and rifampicin resistant TB.

In the present study, total number of 3281 presumptive TB samples was tested by CBNAAT. In 3581 presumptive TB samples, *Mycobacterium* was not detected in 2252 (68.64%) cases. Out of 3281 presumptive TB samples, 963 (29.35%) were *Mycobacterium* positive and rifampicin sensitive [Figure 1]. Sixty-six (2.01%) were positive for *M. tuberculosis* and were rifampicin resistant.

RESULTS

In the present study, total number of 3281 presumptive TB samples was tested by CBNAAT. In 3581 presumptive TB samples, *Mycobacterium* was not detected in 2252 (68.64%) cases. Out of 3281 presumptive TB samples, 963 (29.35%) were *Mycobacterium* positive and rifampicin sensitive. Sixty-six (2.01%) were positive for *M. tuberculosis* and were rifampicin resistant.

DISCUSSION

In the present study, total number of 3281 presumptive TB samples was tested by CBNAAT. In 3581 presumptive TB samples, *Mycobacterium* was not detected in 2252 (68.64%) cases. Out of 3281 presumptive TB samples, 963 (29.35%) were *Mycobacterium* positive and rifampicin sensitive. Sixty-six (2.01%) were positive for *M. tuberculosis* and were rifampicin resistant.

In the study done by Tripathi, *et al*., Status of drug resistance detected by CBNAAT; rifampicin sensitive TB was detected in 35.8%, and rifampicin resistant TB was in 53% samples by CBNAAT. In 10.7% cases, TB was not detected.[5]

In a study done by Agrawal *et al*. a total of 170 respiratory specimens (149 BAL and 21 Sputum samples) were tested. Among 170 samples, 42 samples (24.7%) were GeneXpert TB positive.[6]

In the study done by Arora *et al*. 84.21% samples were rifampicin sensitive and 15.78% samples were rifampicin resistant.[4]
According to RNTCP report 2018, in the year 2017 total 10,77,377 number of test were performed by 628 CBNAAT machines out of which 37,488 (3.48%) were rifampicin resistant TB.[6]

In the study done by Chakaonda et al. the Xpert MTB/RIF assay detected rifampicin resistance in 64/995 (6.4%) specimens.[7]

In a study done by Metcalfe et al. 28% samples were rifampicin sensitive and 20% samples were rifampicin resistant.[8]

In the study done by Iram et al. out of total 245 sample MTB was detected in 111 (45.3%) cases.[9]

In the study done by Sasikumar et al. the study enrolled 257 presumptive TB cases which included 132 pulmonary and 125 extrapulmonary presumptive TB cases Out of a total of 104 pulmonary TB cases, 73 were rifampicin-sensitive and 31 were rifampicin-resistant cases. 103 EPTB cases included 66 rifampicin-sensitive and 37 rifampicin-resistant cases.[10]

In the study done by Youngs et al. MTB was detected in 60 of 100 (60%) of CBNAATs and rpoB mutations that is rifampicin resistance was in 3 of 60 (5%) of MTB-D samples.[11]

In the study done by Sachdeva and Shrivastava samples subjected to CBNAAT, 58.3% were found to be positive for TB.[12]

In the study done by Chakraborty et al. in Pleural fluid samples CBNAAT were positive for MTB in (32%) subjects. Out of these patients, rifampicin resistance was detected in 8.3% individuals. In sputum, CBNAAT MTB was detected in 10.6% subjects. Among them, 12.5% had rifampicin resistance.[13]

CONCLUSION

Inability to rapidly diagnose and treat the affected patients leads to increased morbidity and mortality and development of secondary resistance and ongoing transmission of the disease. Diagnosis of drug resistance by conventional methods takes 6–8 weeks in detection. Detection of rifampicin resistant TB by CBNAAT is done within few hours. Consequently early diagnosis of TB patients helps in early and precise treatment and prevents transmission of MDR strains of TB in the community.

REFERENCES