Enthesophytes and Tubercles of the Calcaneum: An Anatomical and Clinical Understanding of the Relationship between Calcaneal Spurs and Plantar Heel Pain

Ajay Kumar Mahto¹, Saif Omar²

¹Professor, Department of Orthopaedics, Katihar Medical College, Katihar, Bihar, India, ²Associate Professor, Department of Anatomy, Katihar Medical College, Katihar, Bihar, India

Abstract

Background: Calcaneus is the largest of all the bones that constitute the skeleton of the foot. It is also the largest tarsal bone and plays a pivotal role in weight transmission, weight bearing, gait, and posture. In professions involving long durations of standing and in disorders such as obesity there may be growth of abnormal bone tissue at the site of tendinous attachments known as enthesophytes or spurs. Radiologically these spurs may differ from the naked eye and clinical examinations. The apices of these spurs are often embedded in the plantar fascia of the foot.

Aim: The aim of the present study was to observe the enthesophytes and tubercles of dry adult human calcanei.

Materials and Methods: One hundred dry adult human intact calcanei were obtained from the four different medical colleges in the state of Bihar and observed in detail. Bones were of unknown, age and sex and were supposedly from cadavers of Bihar origin.

Results: The incidence of calcaneal spurs was reported to be 22% with laterality of 14 and 8 in right and left sides, respectively. Our findings have been compared with those of other researchers. Medial tubercle was larger than lateral tubercle, and all enthesophytes were observed to be originating from the medial tubercle only.

Conclusion: Calcaneal enthesophytes or spurs may be related to the nature of work or orthopedic pathology. Probable other factors that may increase the incidence of spur formation are uncontrolled weight gain, advancing age, and constant use of uncomfortable footwear.

Key words: Calcaneus, Enthesophytes, Pain, Spurs, Tubercles

INTRODUCTION

The foot extends from the point of the heel to the roots of the toes. Superior and inferior surfaces of the foot are referred to as dorsum and plantar, respectively. The foot is divided into tarsus and metatarsus. The tarsus is the posterior half formed by the tarsal bones, which are arranged in two rows. The proximal row consists of talus and calcaneus, whereas the distal row consists of cuboid, navicular, and cuneiform. The largest of the tarsals, the calcaneus forms an irregular block of bone.¹ It is also referred to as heel bone and forms a major component of the skeleton of the hindfoot and prominence of the heel.² The calcaneus is the longest, strongest, and largest of all the tarsal bones.³ It is the first bone in the foot to ossify and is also the most frequently injured tarsal bone. It transmits the weight of the body to the ground. This bone also provides leverage for the action of the posterior calf muscles attached to its broader and non-articular posterior surface.⁴ Very rarely, the calcaneum may also present itself with a set of accessory bones.⁵ Recently, the calcaneus has also been used as a rich source of stem cells due to its potential to differentiate into various types of cells such as adipocytes, osteoblasts, chondrocytes, and myoblasts.⁶
it presents six surfaces and a shelf-like bony projection the sustentaculum tali which as the name implies sustains the head of the talus and also bears the greatest weight per area. The calcaneus bears four tubercles, anterior, lateral, and medial which are present on the inferior or plantar surface and a small peroneal tubercle on the lateral surface. Occasionally, an enthesophyte has been observed growing anteriorly along the calcaneal tuberosity along the entire width of the bone. Plantar fasciitis is the most common cause of plantar heel pain. Clinically, the etiology and pathophysiology of enthesophyte formation in calcaneum has not yet been clearly understood. In spite of different treatment modalities of a heel spur, the association of incidence of calcaneal spur with clinical and functional parameters in nonconclusive. It has been suggested that longitudinal traction or vertical compression may be the causative factors. Enthesophyte formation usually occurs at the site of ligamentous and tendinous insertions into the bone. An enthesophyte tends to grow in the direction of natural pull of ligaments and tendons involved. The lateral and medial tubercles of calcaneus provide sites for the origin of muscles of the various layers of the sole. The medial tubercle gives origin to abductor hallucis, flexor digitorum brevis, and abductor digiti minimi. The lateral tubercle gives origin to abductor digitii minimi and lateral head of flexor digitorum accessorius. The anterior tubercle provides attachment to the short plantar ligament, and the long plantar ligament is attached to the rough strip between the three tubercles. The peroneal tubercle lies between the tendons of peroneus brevis above and peroneus longus below. Variations in the gross morphology of the calcaneus have been reported in the literature with reference to sex, race, and occupation; but there are few citable references regarding the observation on tubercles and incidence of calcaneal enthesophytes. The most enthesophytes are encountered radiographically or clinically during surgical procedures, but our study focuses on observing the incidence of enthesophytes in dry bone by naked eye examination.

MATERIALS AND METHODS

One hundred dry intact adult human calcanei were observed in details for enthesophytes. The bones were supposedly of Bihar origin. Sex of the bone was not taken into consideration. Specimens that showed signs of damage or previous fracture were discarded from the study. Naked eye examination of all the bones was performed, and incidence of spurs was recorded. Handheld magnifying lens was used for observing the peroneal tubercle (Figures 1-4).
Inclusion Criteria
• Bones belonging to cadavers of Bihar origin
• Bones with intact gross morphology and tubercles
• Bones belonging to adult
• Bone which were available in pairs.

Exclusion Criteria
• Bones which were unpaired
• Bones with abnormal morphology and tubercles
• Bones belonging to children
• Bones which showed signs of previous fracture.

Observation
Of 100 calcanei observed \((n = 100) \) enthesophytes were observed in 22 specimens. All the specimens studied presented with four tubercles. Medial tubercles were larger in all specimens. The total incidence in this study was 22% out of which fourteen were on the right side, and eight were on the left side, respectively (Tables 1-4).

Figure 5 shows the incidence of enthesophytes in the present study.

Figure 6 shows a pictorial representation of laterality of incidence of enthesophytes in the present study. On the right side, enthesophytes were observed in 14 out of 22 calcanei. On the left side, enthesophytes were observed in 8 out of 22 calcanei.

Table 1: Incidence of enthesophytes in this study

<table>
<thead>
<tr>
<th>Total number of calcanei observed</th>
<th>Incidence of enthesophytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 100)</td>
<td>22%</td>
</tr>
</tbody>
</table>

Table 2: Number of tubercles in each calcaneus observed

<table>
<thead>
<tr>
<th>Total number of calcanei observed</th>
<th>Tubercles present in each calcaneus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 100)</td>
<td>A/P/L/M</td>
</tr>
</tbody>
</table>

A: Anterior, P: Peroneal, L: Lateral, M: Medial

Table 3: Largest of all the tubercles in each calcaneus observed

<table>
<thead>
<tr>
<th>Total number of calcanei observed</th>
<th>Largest tubercle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 100)</td>
<td>Medial tubercle</td>
</tr>
</tbody>
</table>

Table 4: Incidence of laterality of enthesophytes in this study

<table>
<thead>
<tr>
<th>Incidence of enthesophytes</th>
<th>Laterality of incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>22%</td>
<td>R=14/22 (64%) and L=08/22 (36%)</td>
</tr>
</tbody>
</table>

DISCUSSION

Enthesophytes were observed in 22 out of 100 bones examined in this study. In this study, we observed that there was no spur formation from either of the anterior, lateral, and peroneal tubercles of any specimen. Only in three specimens, we observed enthesophytes originating...
Calcaneal enthesophytes are bony outgrowths of the calcaneus that are common findings on radiographic examinations of the foot and ankle. Such outgrowths can extend on the whole extent of the calcaneus. Anatomical knowledge of calcaneal enthesophytes is clinically relevant as these spurs affect the normal alignment of the calcaneus. Misalignments lead to instability and are a frequent cause of heel pain. Enthesophyte formation usually occurs in the medial tubercle of calcaneum and is probably due to biomechanical reasons. The factors that aggravate the incidence of spurs are increasing weight, obesity, advancing age, and concurrent orthopedic diseases. Ethnic and developmental variations must also be considered. Theoretically, calcaneal enthesophytes may be an adaptive response to vertical compression of the heel. Regular wearing of uncomfortable or improper footwear can also be a causative factor.

REFERENCES

11. Jakob C. Association of calcaneal spurs with above average body weight. Texas A&M Health Science Center, College of Medicine, Temple, TX.

Source of Support: Nil, Conflict of Interest: None declared.