Magnetic Resonance Imaging Susceptibility-weighted Imaging is More Reliable to Detect Hemorrhage and Calcification than Magnetic Resonance Imaging T2*-weighted Gradient Echo in Brain Imaging

B Ashraf Ahmed¹, N Arun Kumar¹, Deepeesh Vijayan², Abubacker Sulaiman Farook³, Praveen Kumar Magudeeswaran², Preethi Ganesan²

¹Assistant Professor, Department of Radiology and Imaging Sciences, Chettinad Hospital and Research Institute, Kanchipuram, Tamil Nadu, India; ²Post-graduate, Department of Radiology and Imaging Sciences, Chettinad Hospital and Research Institute, Kelambakkam, Kanchipuram, Tamil Nadu; ³Professor, Department of Radiology and Imaging Sciences, Chettinad Hospital and Research Institute, Kelambakkam, Kanchipuram, Tamil Nadu, India

Abstract

Introduction: Magnetic resonance imaging (MRI) of the brain is the best modality to visualize brain parenchyma and brain pathology. Apart from routine sequence, T2*gradient echo (GRE) sequence was being used to detect calcification and bleed. We have studied that the sensitivity and reliability of MR susceptibility-weighted imaging (SWI) sequence are far better than T2*GRE sequence for detecting cerebral microbleed (CMB) and calcification.

Materials and Methods: The study was a retrospective study conducted with 50 patients with symptoms and signs of brain pathology. The patients underwent MRI and computerized tomography (CT). The MRI was performed in 1.5 Tesla scanner, and CT was performed in 128 multislice CT scanner using recommended sequences. The obtained images were being subjected to radiological analysis and interpretation.

Results: Out of 50 cases, SWI exclusively identified CMB in 16 cases in which even CT failed to identify the lesion. SWI sequence in MRI is a better sequence to detect bleed and calcification in brain parenchyma.

Conclusion: Both the modality was being carried out in all patients including normal patients with prescribed sequences. On comparison with T2*GRE sequence, SWI is excellent in spatial resolution for evaluating CMB and calcification.

Key words: Cerebral calcifications, Cerebral hemorrhage, Cerebral microbleed, Magnetic resonance imaging, Magnetic resonance imaging brain, Susceptibility-weighted imaging, T2*-weighted gradient echo imaging

INTRODUCTION

Computerized tomography (CT) of the brain is being considered as gold standard for evaluation of bleed and calcification of brain, though magnetic resonance imaging (MRI) is considered as best modality to view brain anatomy, physiology, and pathology.¹ In MRI T2*gradient echo (GRE) sequence, it is being used to detect calcification and bleed, but still it cannot able to detect the calcification and bleed to a certain extent.¹² After the introduction of susceptibility-weighted image (SWI) sequence, we were able to determine calcification and even cerebral microbleed (CMB) in brain, equivalent to that of CT brain images.³

Since CT brain cause radiation hazardous and contraindicated to pregnancy patient, we can use MR SWI sequence for detecting calcification and cerebral microbleed.⁴⁵

Corresponding Author: Dr. Abubacker Sulaiman Farook, Department of Radiology and Imaging Sciences, Chettinad Hospital and Research Institute, Kelambakkam, Kanchipuram - 603 103, Tamil Nadu, India. Phone: +91-9710754999. E-mail: fasulaiman@hotmail.com
MATERIALS AND METHODS

The study was conducted at the Chettinad Hospital and Research Institute. The patients were examined by two different radiologists. It is a retrospective study; both the genders were included in this study. The study is done after proper consent for both MRI as well as CT. The MRI is done in GE 1.5 Tesla scanner, and CT is done in PHILIPS 128 multislice CT scanner.

Control Group
Brain images of the 50 patients, age ranging from 18 to 60, were examined. Based on the visibility of pathological structures, we were using three-point confidence scale: (1) Invisible, (2) partial visible, and (3) clearly visible.

Experimental Group
The acquired image of the 50 patient is taken for random sampling and calculated with routing workload in the department, in which 29 are male and 21 are female, and the age ranges from 18 to 60 (mean age = 36.5).

Exclusion Criteria
MRI is contraindicated for the following patients:
1. Patients with cardiac pacemaker
2. Patients with metallic implants
3. Claustrophobic patients.

Score System
The grading system is being categorized under 6 grading units, namely:
Score 0: Normal patient
Score 1: Visualized in CT images and not visualized in MR images
Score 2: Visualized in CT images, MR (SWI sequence) image and not visualized in MR (T2*GRE sequence)
Score 3: Visualized in both CT and MR SWI and GRE sequences
Score 4: Visualized in MR (SWI) sequence and not visualized in CT images
Score 5: Visualized in T2*GRE sequence and not visualized in CT images and MR SWI.

Image Acquisition and Image Interpretation
- The MRI study was conducted in 1.5 Tesla GE Signa HDxT MRI scan (Table 1)
- The CT scan of brain study was scanned in 128 Slice PHILIPS ingenuity core CT scan
- 8 channel phased array head coil was being used for MRI
- Two radiologists examined the images independently for qualitative analysis on independent AW GE workstation with MPR (multiplanar reconstruction).

RESULTS

We have included 50 patients for this research after getting proper consent.

The results are given below:
- 24 patients were normal categorized Score 0
- 0 patient in Score 1
- 8 patients in categorized in Score 2
- 2 patients were categorized under Score 3
- 16 patients were categorized under Score 4
- 0 patient in Score 5.

Table 1: Parameters and sequences used for the study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MR-T2 FLAIR</th>
<th>MR-T2 W FSE</th>
<th>MR-T1 W SE</th>
<th>MR-T1 W SE</th>
<th>MR-T2 FLAIR</th>
<th>MR-T2 W GRE</th>
<th>MR SWI</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of acquisition</td>
<td>2D</td>
<td>2D</td>
<td>2D</td>
<td>2D</td>
<td>2D</td>
<td>2D</td>
<td>3D</td>
<td>2D</td>
</tr>
<tr>
<td>Plane</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Sagittal</td>
<td>Coronal</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
</tr>
<tr>
<td>FOV (mm)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>TR</td>
<td>8002</td>
<td>4800</td>
<td>1100</td>
<td>1100</td>
<td>8002</td>
<td>1500</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>TE</td>
<td>85</td>
<td>101</td>
<td>26</td>
<td>26</td>
<td>85</td>
<td>150</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Matrix</td>
<td>256*160</td>
<td>320*192</td>
<td>320*192</td>
<td>320*192</td>
<td>256*160</td>
<td>512*224</td>
<td>352*224</td>
<td>512*512</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Interslice gap (mm)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

SWI: Susceptibility-weighted image, CT: Computerized tomography, FSE: Fast spin echo, Flair: Fluid-attenuated inversion recovery, GRE: Gradient echo, MR: Magnetic resonance, 2D: Two-dimensional, 3D: Three-dimensional
DISCUSSION

In our study, we found that CMB and calcification are better seen in SWI sequence rather than T2*GRE sequence. CMB is caused by structural abnormalities of small vessels in the brain, resulting in small chronic hemorrhage, which occurs in normal aging, cerebrovascular disease, and dementia, which may damage the adjacent brain cell causing some impairment. The byproduct of CMB is hemosiderin which is superparamagnetic substance, as hemosiderin is high susceptibility to magnetic field, it causes inhomogeneity when placed in the high signal which is called as susceptibility effect, whereas the GRE sequence is generated by (a) use of gradient coil to generate transverse magnetization and (b) make the flip angle lesser than 90 degrees. Hence, SWI is far better than T2*GRE sequence in early diagnosis in CMB. The patients also underwent CT brain for correlation.

SWI also helps in differentiation of hemorrhage and calcification in brain tumors.

Three dimension images of SWI can also be viewed in multiplanar reconstruction as it has good spatial resolution than T2*GRE sequence.

The images of (Figure 1) SWI, T2*GRE, and the CT images of the brain belongs to the same patient which reveals that SWI sequence in MRI is better sequence to detect bleed in brain parenchyma.

CONCLUSION

In our study, both the SWI and GRE sequences were being carried out in all patients including normal patients with prescribed sequences, which we infer that SWI sequence in MRI imaging of brain is better spatial resolution for diagnosing CMB and calcification than T2*GRE sequence, we can also avoid CT brain, since radiation is hazardous to health.

REFERENCES


Source of Support: Nil, Conflict of Interest: None declared.