Serum Fibrinogen Levels and its Relation to Hypertension

Adil Majeed¹, Aamir Rashid², Rashid Maqbool¹, Waseem Rashid³, Mukhtar Ahmed⁴, Ujala Gulzar⁵

¹Post-graduate Student, Department of Ophthalmology, Government Medical College, Srinagar, Jammu and Kashmir, India, ²Post-graduate Student, Department of Internal Medicine, SKIMS, Srinagar, Jammu and Kashmir, India, ³Senior Resident, Department of Ophthalmology, SKIMS Medical College, Srinagar, Jammu and Kashmir, India, ⁴Post-graduate Student, Department of ENT, Government Medical College, Srinagar, ⁵Intern, Government Medical College, Srinagar, Jammu and Kashmir, India

INTRODUCTION

Fibrinogen is a recognized risk factor for macrovascular disease and increased levels may exert effects through a variety of mechanisms including increased blood viscosity, increased size of fibrin clots, increased tissue deposition and stimulation of atherosclerosis, and vascular thickening thus involved in the pathogenesis of thrombotic cardiovascular events.¹⁻⁵ Various studies have tried to studied association of fibrinogen with hypertension in which few are showing positive association⁶⁻¹⁵ and few are showing negative association between two.¹⁻³,⁶⁻¹⁷ As in Leigh study, which suggest that fibrinogen levels (FLs) may affect prognosis in hypertension in which hypertensive patients with plasma fibrinogen above 3.5 g/L had a 12-fold greater coronary risk than those with fibrinogen below 2.9 g/L.¹⁸ These and other clinical and laboratory observations have led to the hypothesis that hypertension per se may confer a hypercoagulable state¹⁹,²⁰ that might be related to the development of target-organ damage and long-term prognosis.²¹ On other hand, in the biracial atherosclerosis risk in communities study, the prospective association between plasma FL and incident hypertension is still not clear.²² Thus, to investigate further any possible relationship between serum FLs and hypertension, we evaluated serum FL in both hypertensive and non-hypertensive patients in Kashmiri ethnic population.

MATERIALS AND METHODS

This was a prospective, hospital-based, non-randomized study of 101 cases which was conducted at the Department of Ophthalmology, Government Medical College Srinagar.
Kashmir, India. The study was conducted for a period of 18-month from August 2011 to January 2013. The study was approved by the Institutional Ethics Committee.

Inclusion Criteria
- Known cases of hypertension.

Exclusion Criteria
- Patients taking anticoagulants
- Inherited diseases which cause either hypercoagulability or bleeding tendencies
- Patients with severe liver, cardiac, or renal failure
- Systemic illnesses altering the blood coagulation profile.

Based on the status of hypertension, two groups for comparison were made cases and control:
1. Group 1: Cases with hypertension
2. Group 2: Control without hypertension.

Estimation of Plasma Fibrinogen

Test principle
In presence of excess of thrombin, the clotting time of diluted plasma has a direct bearing on the level of plasma fibrinogen.23,24

Procedure
Specimen collection and treatment was done as per standard guidelines described by us previously.25

Statistical Analysis
Statistical software GraphPad InStat-3 was used for statistical analysis. The statistical method involved included independent student t-test for normally distributed continuous variables, the Pearson Chi-square test for categorical variables, and ANOVA was used for comparison of more than two continuous variables. The data were expressed as mean (±standard deviation) and percentage values, and P < 0.05 was considered statistically significant.

RESULTS

The total number of patients included in our study where 101 in which females were 65 (64.35%) and males were 36 (35.64%). The mean age for males was 57.5 years and females was 54.6 years, 66.33% of cases in our study were between 41 and 60 years of age (Table 1 and Figure 1). Total numbers of hypertensive patients included in the study group were 64 and total number of patients without hypertension which were included in the control group were 37. In our study, mean serum FLs in patients with hypertension were 4.465 g/l and mean serum FLs in patients without hypertension were 4.666 g/l. There was not a statistically significant difference between the mean serum FLs of patients with and without hypertension \(P = 0.552 \) (Table 2 and Figure 2). In our study, difference in the mean serum FL of male (4.079) and female (4.794) seems to be significant as \(P = 0.033 \), but the statistical result was underpowered, thus statistical significance between two groups is questionable and can be due to the fact that female patients outnumbered male patients in our study population. The maximum number of patients attending the OPD for an ophthalmic checkup was urban dwellers 68.31% in comparison to rural 31.68%. The relationship of serum FL was found to be statistically insignificant with the geographical distribution of population \(P = 0.754 \) (Table 3 and Figure 3).

Table 1: Age and gender distribution of the studied subjects

<table>
<thead>
<tr>
<th>Age in year</th>
<th>n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>≤40</td>
<td>2 (5.55)</td>
<td>7 (10.76)</td>
</tr>
<tr>
<td>41-50</td>
<td>8 (22.22)</td>
<td>26 (40.00)</td>
</tr>
<tr>
<td>51-60</td>
<td>16 (44.44)</td>
<td>17 (28.15)</td>
</tr>
<tr>
<td>61-70</td>
<td>6 (16.66)</td>
<td>11 (16.92)</td>
</tr>
<tr>
<td>>70</td>
<td>4 (11.11)</td>
<td>4 (6.15)</td>
</tr>
<tr>
<td>Total</td>
<td>36 (35.64)</td>
<td>65 (64.35)</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>57.5±10.8</td>
<td>54.6±11.0</td>
</tr>
<tr>
<td>(max, min)</td>
<td>(32, 80)</td>
<td>(35, 80)</td>
</tr>
</tbody>
</table>

SD: Standard deviation, NS: Not significant
DISCUSSION

Many studies have compared FLs in normotensive and hypertensive patients.26-28 Our study demonstrated that there was no significant difference in FLs in hypertensive as compared to the normotensive population. We also observed that this was true irrespective of gender. Conflicting results in various studies may be explained by the difference in blood pressure values of patients; less sample size included in these studies and interference of antihypertensive treatment on the hemostatic system.

Papadakis et al., reported that patients who were on lipid-hostile antihypertensive drugs had significantly higher levels of fibrinogen as compared with those on lipid-neutral antihypertensives or those who were not receiving antihypertensive treatment.

Hypertensive patients have been shown to have increased the degree of platelet and coagulation system activation while as the fibrinolytic system has decreased activity which may be explained by the prothrombotic state related to hypertension. However, our study did not show any significant difference between elevated FLs and blood pressure. Anoop Shankar et al., observed the lack of association between FL and incident hypertension among women in their study although they showed significant association of FLs and development of hypertension in men. These gender-related differences between fibrinogen and other cardiovascular outcomes have been noted in coronary heart disease,9 carotid intima-media thickness,30-32 and peripheral vascular disease. However, our study failed to show any gender difference. Limitations of our study included a smaller number of sample size. Furthermore, we did not study the relationship between FLs and target end-organ damage in hypertensive patients.

CONCLUSION

There is no association of FLs and hypertension in our population. Further prospective studies with larger sample size are needed to fully elucidate the relationship between FLs and Hypertension in our population.

REFERENCES

Fibrinogen levels and hypertension: A review

Source of Support: Nil, Conflict of Interest: None declared.