Isolation and Speciation of *Malassezia* in Patients Clinically Suspected of Pityriasis Versicolor

B C Sharath Kumar¹, Anjana Gopi², Divya Harindranath³, Divya Gupta⁴, T K Hitha³, Syeda Misbah Ul Khair³

¹Professor and Head, Department of Dermatology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India, ²Professor, Department of Microbiology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India, ³Junior Resident, Department of Dermatology, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka, India

Abstract

Introduction: *Malassezia* species are lipophilic yeasts recognized as commensals of skin that may be pathogenic under certain conditions. The most common described human infection due to a member of the genus is pityriasis versicolor (PV), a chronic, superficial disease of the stratum corneum layer of the epidermis containing the typical hyphal elements and yeast cells of *Malassezia furfur*.

Objectives: Identify and speciate *Malassezia* in patients clinically suspected of having PV.

Methodology: The study was conducted at the Department of Dermatology and Microbiology at Kempegowda Institute of Medical Sciences, Bengaluru, from July 2012 to June 2014. All clinically suspected cases coming to the Department of Microbiology were subjected to mycological work-up. Skin scrapings were microscopically examined with 10% potassium hydroxide (KOH) for budding yeast cells and fungal filaments and inoculated for culture using modified Dixon’s media and Sabouraud’s dextrose agar with and without olive oil at various temperatures. The growth in the culture tubes and plates were further speciated using biochemical tests.

Results: Total cases in the period of 2 years were 130. Male to female ratio is 1.6:1. The infection was common in the age group of 20-30 years. The common clinical presentation was hypopigmented lesion over the shoulder, arm, chest, and back. Out of the 130 suspected cases, KOH was positive in 120 and culture was positive in 130. Wood’s lamp examination was positive in 100 cases, negative in 5 and it was not done in 25 cases. Wood’s lamp positive cases were also positive for KOH and culture.

Conclusion: The most common species isolated was *M. furfur* followed by *Malassezia slooffiae, Malassezia pachydermatis, Malassezia globosa, Malassezia obtusa,* and *Malassezia restricta*. A prospective study was aimed to determine the incidence of *Malassezia* in patients clinically suspected of having PV and to speciate the identified isolates.

Key words: *Malassezia*, Pityriasis versicolor, Potassium hydroxide

INTRODUCTION

Malassezia is a lipophilic yeast found in areas rich in sebaceous glands of the human skin and other warm-blooded animals.¹ It is a part of normal flora of the human skin. In up to 90% of adults, *Malassezia* is commonly found in seborrheic areas and becomes pathogenic in warm and humid environment.² The most common disease caused by *Malassezia* is pityriasis versicolor (PV).² *Malassezia* genus includes 12 species comprising of *Malassezia furfur, Malassezia pachydermatis, Malassezia sympodialis, Malassezia globosa, Malassezia obtusa, Malassezia restricta, Malassezia slooffiae, Malassezia dermatis, Malassezia japonica, Malassezia nana, Malassezia yamotoensis,* and *Malassezia equi*. The first seven species have been studied in relation to PV.² PV is a mild, chronic, usually asymptomatic superficial fungal infection³ that appears as round-to-oval lesions commonly found on the trunk and upper aspects of the arms. These lesions vary in color and can be hypo-
hyperpigmented or erythematous scaly skin lesions of the stratum corneum. These yeasts are also associated with clinical infections such as folliculitis, seborrheic dermatitis, atopic dermatitis, confluent and reticulate papillomatosis, and systemic infections. The disease PV was described by Eichstedt in 1846, though he was unable to isolate the organism. Robin in 1853 isolated fungal elements from these lesions and named the organism as Microsporum furfur, since it was identical to the dermatophyte Microsporum audouinii. The disease was later renamed as tinea versicolor. These yeast cells were isolated from human dandruff scales by Malassez in 1874, and Baillon included this group of yeasts under the genus Malassezia. Sabouraud (1904) considered this organism as a cause of dandruff and gave it a new name, Pityrosporum malassezii. In 1984, Malassezia gained priority over Pityrosporum and was accepted as the generic name for the fungus. Malassezia has also been shown to be associated with invasive infections in immunocompromized patients, especially those receiving intravenous lipids or with central venous catheters. It is believed that endogenous factors such as increased sweating, administration of corticosteroids, malnutrition and increased plasma cortisol level, and exogenous factors like high temperature and humidity mediate the development of PV. In spite of treatment, the recurrence rate of Malassezia is about 60% in the 1st year and 80% in the 2nd year. If the disease is left untreated, it causes cosmetic problems of neck, face, trunk, etc. In order to prevent morbidity, recurrence and invasive infections, early laboratory diagnosis of the condition is required. Hence, a prospective study was aimed to determine the incidence of Malassezia in patients clinically suspected of having PV and speciate the identified isolates. Numerous studies have shown the relationship between these species and their role as causative agents in triggering diseases. Present study was undertaken to isolate and speciate Malassezia in patients clinically suspected of PV.

OBJECTIVES

- Identify and speciate Malassezia in patients clinically suspected of having PV.

METHODOLOGY

The present study was conducted in the Department of Dermatology and Microbiology at Kempegowda Institute of Medical Sciences, Bengaluru, for 2 years, from July 2012 to June 2014. Consent was taken from all clinically suspected cases and after a detailed clinical history they were subjected to mycological work up.

Lesions of patients clinically suspected of having PV were examined under Wood’s lamp for the presence of golden yellow fluorescence in the Department of Dermatology. Those lesions that showed golden yellow fluorescence were wood’s lamp positive and the others that did not show fluorescence were Wood’s lamp negative.

Specimen Collection

After selection of an appropriate site, the affected area was cleaned aseptically with 70% ethyl alcohol and allowed to dry. Skin scrappings were done from the edges of the lesion using sterile scalpel or with the edge of a clean glass slide. The scrappings were subjected to both microscopy and directly inoculated onto the culture.

Microscopic Examination

Direct microscopic examination was undertaken by a wet mount preparation with 10% potassium hydroxide (KOH). It was placed in the incubator at 37°C for 15 min and then examined to detect the presence of hyphae and budding yeast cells, which generally exhibit the characteristic appearance of “spaghetti and meatballs”.

Culture Study

After the area is cleaned aseptically with 70% ethyl alcohol, the fine scales were collected directly onto modified Dixon’s media containing chloramphenicol and Sabouraud’s dextrose agar (SDA). SDA used were SDA with actidione and without olive oil at room temperature and at 37°C, SDA with actidione with olive oil at room temperature and at 37°C. The inoculated slants and plates were observed every day for the suspected growth of Malassezia for 7-21 days before negative results were noted. After the growth is seen, Gram’s-staining was done to see for the Gram-positive budding yeast cells (Figures 2 and 3).

Biochemical Test

The gross morphology of suspected colonies of Malassezia was noted, and speciation was performed using the different biochemical tests such as the catalase test using 30% hydrogen peroxide, bile esculin splitting test, and cremaphore test using 10% castor oil and tween 20, 40, 80 utilization test was done by standard procedure and based on the results, speciation was done for Malassezia.

Catalase Test

Production of gas bubbles on adding a drop of 30% hydrogen peroxide indicated a positive reaction (Figure 4).

Bile Esculin Splitting Test

The colonies are streaked on bile esculin agar and development of black color indicated a positive test (Figure 5).

Tween (20, 40, 80) Utilization Tests

A lawn culture of the organism is prepared on SDA plate, and three wells are made into which tween 20, 40, 80 are
Kumar, et al.: Isolation and speciation of Malassezia in patients of Pityriasis versicolor

The highest prevalence of PV was observed in 20-30 years old age group with 47%, and the least affected were <10 years and >50 years (Figure 8).

Among the 130 cases, 90 cases presented with the hypopigmented lesion and 40 cases were hyperpigmented (Figure 9).

Wood’s Lamp Examination

Out of the 130 cases, Wood’s lamp was positive in 100 cases and negative in 5. It was not done in 25 cases (Figure 10).
Out of the 130 cases, KOH and culture was positive in 120 cases, 10 cases that were KOH negative was culture positive (Table 1).

Wood’s lamp examination was done for 105 cases. Out of the 130 cases, the Wood’s lamp examination showed yellow fluorescence in 100 cases and was negative in 5. All 105 cases were both KOH and culture positive (Table 2).

Wood’s lamp examination was not done in 25 patients. Of the 25 cases were Wood’s lamp examination was not done KOH was positive in 15 and negative in 10 but, all 25 cases were culture positive (Table 3).

Table 4 differentiates the various species based on their biochemical reactions. All Malassezia species are lipid-dependent except M. pachydermatis. The species are

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{KOH} & \textbf{Culture} & \textbf{Total} \\
\hline
Positive & Positive & 120 \\
Negative & Positive & 10 \\
\hline
\end{tabular}
\caption{Comparison of KOH and culture results}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Tests done} & \textbf{Positive} & \textbf{Negative} \\
\hline
Wood’s lamp examination & 100 & 5 \\
KOH & 105 & 0 \\
Culture & 105 & 0 \\
\hline
\end{tabular}
\caption{Comparison of Wood’s lamp result, KOH, and culture}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Test} & \textbf{Positive} & \textbf{Negative} \\
\hline
KOH & 15 & 10 \\
Culture & 25 & 0 \\
\hline
\end{tabular}
\caption{Comparison of Wood’s lamp result, KOH, and culture}
\end{table}
M. sloof isolated from shoulder, arm, chest, neck, and back. M. restricta based on the body sites. Malassezia
Table 5 shows the distribution of various species of the chest, from chest lesion.
from back, temperatures and humidity.1 they are more involved with outdoor activities, which place
of male predominance. The male preponderance is because Ghosh Malassezia has been well-known. The frequency of recovery from body sites, and differences in techniques of identi
differentiated based on their growth, catalase reaction, esculin splitting, growth with cremaphore, and tweens at various concentrations.

Figure 11 shows the different species isolated - M. furfur is the most common isolate (52%) followed by M. sloofiae, M. pachydermatis, M. sympodialis, M. globosa, M. obtusa, M. restricta.

Table 5 shows the distribution of various species of Malassezia based on the body sites. M. furfur has been isolated from shoulder, arm, chest, neck, and back. M. sloofiae and M. pachydermatis have been isolated from the chest, M. sympodialis and M. globosa has been isolated from back, M. obtusa from shoulder and arm and M. restricta from chest lesion.

DISCUSSION

Association of Malassezia with various skin disorders such as PV, seborrheic dermatitis, and Malassezia folliculitis,10 has been well-known. The frequency of recovery from Malassezia depends on various factors such as age, sex, body sites, and differences in techniques of identification.

The total cases that came to the department of microbiology during the 2 years period were 130. 80 males (58%) and 50 females (42%) were suspected of PV. Male to female ratio was 1:4.1 Many studies by Shah et al.1, Shoeib et al.,2 Ghosh et al.,3 and Kaur et al.,5 have shown the same pattern of male predominance. The male preponderance is because they are more involved with outdoor activities, which place them at high risk of exposure to factors such as high temperatures and humidity.1

The highest prevalence of PV was observed in 20-30 years old age group, and the least affected were <10 years and >50 years. Studies by Shah et al.1, Shoeib et al.,2 Tarazooie et al.,2 and Kaur et al.,5 has correlated with our findings. This indicated that the disease generally appears in the late teens, with a peak in the 20 years, when the sebum production is at the highest level and rarely found in elderly individuals. The most affected areas of the body were the trunk, shoulder, and arm, and least affected site were abdomen and face. These finding correlated with other studies of Shah et al.,1 Shoeib et al.,2 and Kaur M et al.5 In the present study, 90 cases showed the hypopigmented lesion and 40 cases were hyperpigmented. Shah et al., Shoeib et al., Kaur M et al., and Bita T et al., have reported hypopigmented lesions as a common clinical presentation. Two cases presented with both hypopigmented and hyperpigmented lesions. Two different species were isolated in the above cases - M. globosa and M. restricta in one of the cases and M. globosa and M. obtusa in another case. Such finding has not been reported from any other studies. The hypopigmentation induced by this fungus can be explained on the basis of production of

<table>
<thead>
<tr>
<th>Table 4: Distribution of species based on their different biochemical reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>M. furfur</td>
</tr>
<tr>
<td>M. pachydermatis</td>
</tr>
<tr>
<td>M. sympodialis</td>
</tr>
<tr>
<td>M. globosa</td>
</tr>
<tr>
<td>M. obtusa</td>
</tr>
<tr>
<td>M. restricta</td>
</tr>
<tr>
<td>M. sloofae</td>
</tr>
<tr>
<td>M. sloofiae</td>
</tr>
</tbody>
</table>

Table 5: Distribution of Malassezia species based on the body sites in PV

<table>
<thead>
<tr>
<th>Species</th>
<th>Face</th>
<th>Neck</th>
<th>Chest</th>
<th>Back</th>
<th>Shoulder</th>
<th>Abdomen and arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. furfur (67)</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>M. sloofiae (23)</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. pachydermatis (17)</td>
<td>3</td>
<td>-</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>M. sympodialis (10)</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>M. globosa (5)</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>M. obtusa (4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>M. restricta (4)</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 11: Different species of Malassezia Isolated
dicarboxylic acids, a main component of which is azelaic acid. This acid acts through competitive inhibition of 3,4-dihydroxyphenylalanine tyrosinase and perhaps has a direct cytotoxic effect on hyperactive melanocytes. The pathogenesis of hyperpigmentation is also not fully understood, but it may be due to increased thickness of the keratin layer and more pronounced inflammatory cell infiltrate in these individuals that act as a stimulus for the melanocytes.\(^9\)

Out of the 130 cases the Wood’s lamp examination showed yellow fluorescence in 100 (77%) cases and all wood’s lamp positive was culture positive. Five cases were wood’s lamp negative but culture positive. In 25 cases, Wood’s lamp was not done but \textit{Malassezia} species were isolated in culture. 10% KOH was performed on all 130 cases, out of which, 120 samples were KOH positive, and all 130 samples were culture positive. 10 samples which were KOH negative showed culture positive. In our study, \textit{M. furfur} was the most common species that was isolated (52%), followed by \textit{M. slooffiae} (18%), \textit{M. pachydermatis} (12%), and \textit{M. sympodialis} (8%), \textit{M. globosa} (4%), \textit{M. restricta} (3%), and \textit{M. obtusa} (3%). In studies by Shah et al.,\(^3\) \textit{M. globosa} (50%), Shoeib et al.,\(^5\) \textit{M. sympodialis} (54%), Ghosh et al.,\(^3\) and \textit{M. globosa} (53%), and in the study by Kaur et al.,\(^5\) \textit{M. furfur} (52%) was the common isolate.

CONCLUSION

\textit{Malassezia} species can now be added to a growing list of normal skin flora organisms of low virulence that may cause mild recurrent skin infections and serious systemic infection in the susceptible host. Although, \textit{Malassezia} species are considered as normal microflora of the human skin, these lipophilic yeasts are associated with many skin disorders in particular PV.\(^5\) The identification of \textit{Malassezia} yeast to species level is of importance to determine which species are implicated in skin disease and whether there is variation in the distribution of the yeast with clinical data, body site, and origin of the population, etc.\(^5\) Biomolecular techniques are considered as fast and more accurate methods to identify \textit{Malassezia} species.\(^6\) However, simple methods based on morphology and physiology evaluation, such as the ones employed in this study, are more accessible to every laboratory.\(^6\) It would help to prevent recurrences, systemic complications and any cosmetological problems especially in patients of younger age group.

REFERENCES

How to cite this article: Kumar BCS, Gopi A, Harindranath D, Gupta D, Hitha TK, Ul Khair SM. Isolation and Speciation of Malassezia in Patients Clinically Suspected of Pityriasis Versicolor. Int J Sci Stud 2015;3(6):18-23.

Source of Support: Nil, **Conflict of Interest:** None declared.