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a single item. Hahm and Yano (1995) develop this problem 
for multiple items and presented a heuristic algorithm for 
determining the common cycle time. Khouja (2000) study 
this problem with the assumption of  rework cost for 
achieving the required quality and also variable production 
rate. Khouja (2003) formulate a three-stage supply chain 
and dealt with three coordination mechanisms. Jensen and 
Khouja (2004) present a heuristic algorithm for achieving 
the optimal solution in polynomial time by developing 
Hahm and Yano (1995). Clause and Ju (2006) develop the 
heuristic algorithm presented by Jensen and Khouja (2004). 
Their algorithm found the optimal solution of  large scale 
problem at a shorter time.

Torabi et al (2006) analyze a two-echelon supply chain 
including one supplier and one assembler and multiple items 
with common cycle time. They proposed a hybrid genetic 
algorithm for the solution of  ELDSP. Nikandish et al 
(2009) examine a three-echelon supply chain, including one 
supplier and multiple assemblers and multiple retailers with 
common cycle time and presented the optimal solution for 
medium scale problems. Osman and Demrli (2012) analyze 
the economic lot and delivery scheduling problem for a 
multi-stage supply chain with multiple items and develop an 
algorithm to find the optimal solution for a synchronized 
replenishment strategy. In the literature review, there is no 

INTRODUCTION

The coordination of  the chain members is one of  the 
important objectives of  supply chain, since members 
of  each stage have different and even opposite profit. 
Synchronization can increase coordination among the chain 
members. The synchronization causes balance between 
decision making for internal production scheduling and 
the external delivery in the chain.One of  the prevalent 
problems in the literature that examines these two cases 
simultaneously is economic lot and delivery scheduling 
problem (ELDSP).

Clark and Scarf  (1960) present a recursive decomposition 
algorithm to determine optimal policies for a serial multi-
echelon structure. Hahm and Yano (1992) study a supply 
chain consisting one supplier and one assembler and could 
determine the interval between production and delivery for 
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contribution to ELDSP in such supply chains. Osman and 
Demrli (2012) suppose that integer multiplies policy are 
parameter while in our paper is variable. 

This paper is organized as follows. Section 2 described 
the problem definition. In Section 3, the parameters, 
variables and mathematical modeling are provided. Section 
4 presents the details of  the proposed hybrid Algorithm. 
Section 5 provides the Computational results. Finally, 
conclusions are presented in Section 6.

PROBLEM DEFINITION

In this paper, we have focused on the coordination among 
the members of  a three-stage supply chain. The supply 
chain includes multiple suppliers, multiple fabricators and 
only single assembler.

The suppliers convert raw materials into components. 
Fabricators transform these components into items which 
are applied for production of  the final products by the 
assembler.

Other assumptions are as follows:
•	 Each node has a single production line at the stage of  

suppliers and fabricators.
•	 The carried quantity of  each stage’s node is as much 

as demand of  the next stage.
•	 Just one shipment is allowed to be sent at the end of  

each cycle time.
•	 The values of  demand and production rate are fixed 

and certain.
•	 The holding cost of  each item per unit time is fixed 

and certain.
•	 The delivery cost is fixed.
•	 For suppliers and fabricators stage, the setup time is 

sequence-independent.
•	 For suppliers and fabricators stage, the setup cost is 

fixed and certain.
•	 Ordering cost is fixed for each retailer.

The objective of  this study is achieving coordination among 
the members. Therefore, synchronization is necessary. Two 
types of  synchronization, full synchronization by applying 
the common cycle time policy and the partial synchronization 
by applying the integer multipliers policy, is selected.

MATHEMATICAL MODELING

In formulating the problem, we follow Osman and Demirli 
(2010) and extension it for our paper. The parameters and 
variables of  the model are defined as follows:

Indices
s: index of  suppliers, s = 1,2, ..., S.
f: index of  fabricators, f = 1,2, ..., F.
a: index of  assemblers, a = 1.
i : index of  items in each facility � ,� ,� ,f s a  or. r

Parameters
q: sequence position in each facility f or s:
ns: index of  the number of  items at sth supplier.
nf: index of  the number of  items at fth fabricator.
na: index of  the number of  items at assembler.
Dsi: demand rate of  ith item at sth supplier.
Dfi: demand rate of  ith item at fth fabricator.
Dai: demand rate of  ith item at assembler.
Dsi: production rate of  ith item at fth supplier.
Pfi : production rate of  i th item at f th fabricator.
HBsi: holding cost per unit of  th unprocessed item per unit 
time at sth supplier.
HBfi : holding cost per unit of  i th unprocessed item per 
unit time at f th fabricator.
Hai: holding cost per unit of  ith item per unit time at 
assembler.
HAsi: holding cost per unit of  ith processed item per unit 
time at th supplier.
HAfi : holding cost per unit of  i th processed item per unit 
time at f th fabricator.
ds : transportation cost per delivery at s th supplier.
df: transportation cost per delivery atth fabricator.
da: transportation cost per delivery at assembler.
c si : production setup cost of  ith item atth supplier.
cfi: production setup cost of  i th item at f th fabricator.
ca : ordering cost at assembler.
t si : production setup time of  i th item at sth supplier.

tfi: production setup time of  ith item at f th fabricator.

Variables
T: cycle time.
Xsiq: 1 if  item i is assigned to q th position at s th supplier, 
otherwise 0.

X fiq : 1 if  item i is assigned to qth position atth fabricator, 

otherwise 0.

m2 and m1: integer multiplier for integer multipliers policy 
(i.e., the cycle time at the assembler is T, m1T at any 
fabricator stage, and it equals m2m1T at any supplier stage).

Modeling
Min TC=
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HYBRID ALGORITHM

Genetic algorithms (GAs) are intelligent stochastic search 
techniques inspired from the principle of  ‘survival-of-the-
fittest’ in natural evolution and genetics. GAs have been 
applied successfully for a wide variety of  combinatorial 
optimization problems to find optimal or near optimal 
solutions since its introduction by Holland (1992).

GAs start with an initial set of  solutions, called population. 
Each solution in the population is called a chromosome 
(or individual). The chromosomes are evolved through 
successive iterations, called generations, by genetic 
operators (selection, crossover and mutation) that mimic 
the principles of  natural evolution. A’fitness value’ is 
assigned to each individual according to a problem specific 
objective function. GA explore solutions with increasing 
fitness, i.e., the higher the fitness, the more likely the genes 
of  a chromosome are propagated to the next generations 
(Naso et al., 2007, Torabi et al., 2006).

Although GA can be directly applied to complex 
combinatorial optimization problems, each generation of  
the algorithm must maintain a large population size. With 
the expansion of  the problem size, the computational 
time needed will increase dramatically. Besides, GA 
usually converges prematurely, which is mainly caused 
by a lack of  diversity in the population. In addition, the 
mutation operator is inadequate for a systematic local 
search. Compared with GA, tabu search (TS) has faster 
convergence rate. However, the search performance of  TS 
greatly depends on the initial solution. So, GA explores well 
the search space while TS intensifies the search in promising 
regions. According to the strengths and weaknesses of  
these two algorithms, we apply TS to replace the mutation 
operator in GA and proposed Hybrid genetic-tabu search 
algorithm (HGTSA). We find sequnces of  production 
(binary variables) from HGTSA while value of  cycle time 
is obtained through an optimization process.

Encoding and Decoding
There are two different representation schemes (or formats) 
to represent the discrete part of  a solution for the problem, 
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i.e. sequence vectors in different production line or node 
(Wardono and Fathi, 2004 and Cheng and Gen, 1997). We 
used Wardono and Fathi (2004). Suppose that we have two 
suppliers in the first stage and one fabricator in the middle 
stage that the fabricator has 4 items and the supplier 1 and 
2 have 6 and 3 items, respectively.

In Figure 1, the code of  the individual corresponding 
solutions is sequencing 3-5-4-2-1-6 at supplier 1 and 1-3-2 
at supllier 2 and 4-2-3-1 at fabricator.

Selection
Selection is the process of  determining the number 
of  times, trials, a particular individual is chosen for 
reproduction and, thus, the number of  offspring that 
an individual will produce. A roulette wheel selection 
procedure has been applied for selection operator in 
our algorithm. In this procedure, a real-valued interval, 
Sum, is determined as the sum of  individual raw fitness 
values over all the individuals in the current population. 
Individuals are then mapped one-to-one into contiguous 
intervals in the range [0,Sum]. The size of  each individual 
interval corresponds to the fitness value of  the associated 
individual. To select an individual a random number is 
generated in the interval [0,Sum] and the individual whose 
segment spans the random number is selected. This 
process is repeated until the desired number of  individuals 
has been selected.

Crossover
The crossover is basic operator for producing new 
chromosomes in the GA. It produces new individuals that 
have some parts of  both parent’s genetic material.

In the literature review, several crossover operators have 
been proposed (Iyer and Saxena, 2004 and Wang and Wu, 
2004). Among them, the following crossover operators 
have been widely used: partially matched crossover (PMX) 
intending to keep the absolute positions of  genes and 
linear order crossover (LOX) intending to preserve relative 
positions. Thus, we used these two operators in our initial 
tests, and found that the crossover LOX works better for 
the problem under consideration. This crossover operator 
works as follows:
Step 1.	� First, select a parent at random, and then choose 

a subsequence of  components with a random size 
within 1 to n-1.

Step 2.	� Produce a proto-offspring by copying the 
subsequence into the corresponding positions of  it.

Step 3.	� Place the remaining components from the other 
parent by making a left-to-right scan. An example 
of  this operator is illustrated in Figure 2.

Tabu Search Based Mutation
The mutation operator is reimplemented with a tabu 
search algorithm. Here, we take the solution obtained by 
GA as the initial solution for the TS. The neighborhood 
structure is defined as swap and we can obtain a 
neighborhood solution when we choose two different 
genes randomly and then exchange their locations. 
Consequently, the two genes which have been exchanged 
are recorded as the element in the tabu list. Besides, when 
the new solution is better than the best-so-far solution, 
we accept it no matter whether the move exits in the tabu 
list. The fundamental idea underlying tabu search is to 
avoid repeated search in the same area of  the solution 
space. To this end, tabu search involves some essential 
concepts such as tabu list, tabu length, and aspiration 
criterion.

Fitness Function
In order to mimic the natural process of  survival of  the 
fittest, the fitness evaluation function assigns to each 
member of  the population a value reflecting their relative 
superiority. In our problem, solutions with lower costs 
imply better solutions. Therefore, the proposed fitness 
function for each individual is defined as:

= 1
kf TC �

(10)

Where TC achieved from Eq. (1). In Eq. (1), three type 
variables exist. First type, binary variables that obtain 
from HGTSA, call sequencing. The second type, integer 
multipliers that we check all possible for them in the range 
of  1 to 3 (i.e., 3×3 situation). The third type, cycle time 
that for each sequencing and situation finds from Eq. (20) 
and among all situations for integer multipliers, best fitness 
register for each individual. Eq. (11) shows the value of  
T that minimizes the total cost derived by differentiating 
Eq. (1) with respect to T.

Figure 1: A sample chromosome Figure 2: Illustration of LOX crossover
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By considering Eqs. (2) and (3) that ensure the feasibility 
of  T to cover setup and production times of  all products, 
Eq. (18) and (19) achieved. Then the optimal value of  T, 
Eq. (20), can be found as the maximum between feasible T 
resulting from Eqs. (2) and (3) and T obtained from Eq. (11).
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Termination Criterion
HGTSA is terminated if  the best-so-far solution does 
not change for 50 consecutive generations or maximum 
number of  generations is executed, whichever comes first.

COMPUTATIONAL RESULTS

In this section, in order to evaluate and compare the 
performance of  proposed HGTSA and traditional GA, 
we consider thirteen different problem sizes that shown 
in Table 3. For each problem instance, 10 problems are 
randomly generated and the required parameters for these 
problems are shown in Table 1. Table 2 shows parameter 
setting for GTSA.

For each instance, we do not know the global optimal 
cost because of  the nonlinear nature of  the Eq.(1), and 
the prohibitive required computation time. Therefore, we 
have compared the total cost obtained for each instance by 
HGTSA, with the best known solution for the optimal total 
cost. Let TCAlgorithm denotes the average total cost obtained 
via HGTSA or GA, and TCbest is the best known solution. 
We can calculate the relative percentage deviation (RPD) as:

−
= × 100%Algorithm Best

Best

TC TC
RPD

TC �
(21)

The results of  HGTSA and GA with common cycle time 
and integer multipliers policies are summarized in Table 4. 
The second column in Table 4 gives RPD for HGTSA 
with common cycle time policy. For integer multipliers 
policy, the third and fourth columns give RPD for GA and 
HGTSA, respectively. The average RPD for the collection 
of  instances is 27.38% for HGTSA and 38.79% for GA 
in integer multipliers policy. It is noted that the solution 
obtained from HGTSA is better than GA. Thus, this 
average value by itself  in our experiments indicates the 

Table 1: Data generation for parameters
Parameter Distribution function Parameter Distribution function
Dsi, Dfi, and Dai Uniform (1000,5000) ds, df and da Uniform (100,1000)
Psi, Pfi Uniform (6000,10000) Csi and Cfi Uniform (5000,9000)
H Bsi and H Bfi Uniform (10,50) Ca Uniform (5000,9000)
H Asi, H Afi, and Hai Uniform (80,120) tsi and tfi Uniform (0.001,0.025)
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Table 4: 
Instance Common cycle time 

policy
Integer multipliers policy Comparison between 

common cycle time 
and Integer multipliers 
policy (% cost saving)RPD for HGTSA (%) RPD for GA (%) RPD for HGTSA (%) Average CPU time 

for GA
Average CPU time 

for HGTSA
1 13.56 19.34 16.34 0.26 min 0.47 min 6.01
2 15.23 19.78 12.14 0.31 min 0.42 min 7.23
3 18.98 21.03 15.89 2.03 min 6.19 min 12.08
4 189.45 25.18 20.08 4.54 min 8.33 min 1.16
5 22.34 29.56 19.23 1.35 min 4.66 min 14.29
6 29.56 30.78 23.67 21.07 min 45.43 min 17.89
7 28.71 36.62 27.09 34.19 min 1.01 h 13.25
8 32.66 41.99 31.89 15.12 min 31.73 min 9.08
9 37.89 44.74 34.29 1.09 h 2.32 h 14.07
10 42.11 48.67 34.53 59.48 min 2.16 h 11.65
11 44.80 50.56 37.72 2.29 h 4.99 h 7.41
12 50.73 57.61 39.23 42.89 min 1.20 h 13.06
13 53.91 59.07 43.88 2.66 h 4.62 h 15.69

Table 3: Configuration of instance problems
# Supply chain configuration ns nf Number of variables Number of constraints
1 1×1 5 5 50,778 17,883
2 2×2 4,2 5,2 39,610 14,754
3 3×2 6,1,2 8,7 464,114 106,262
4 3×3 3,2,3 2,3,2 592,103 137,933
5 4×3 3,5,3,2 3,7,3 385,062 102,129
6 4×4 6,7,4,8 4,6,8,9 1,554,407 314,002
7 5×5 9,3,5,6,4 6,7,3,2,8 1,802,680 380,437
8 6×4 7,5,8,9,10,2 2,3,6,7 1,268,139 265,533
9 7×6 4,6,8,5,9,1,4 3,5,2,1,8,6 2,850,329 520,895
10 8×8 4,5,8,6,4,3,5,8 4,6,1,2,4,7,8,4 2,110,901 422,022
11 10×3 3,5,3,6,9,1,2,2,1,3 14,12,19 4,721,938 921,150
12 6×7 6,18,5,9,11,4 6,8,17,5,6,12,3 2,138,363 440,825
13 10×10 7,5,3,6,9,1,2,2,1,3 9,5,8,9,1,2,9,3,5,7 5,576,079 1,069,616

Table 2: Paremeter setting for HGTSA
Parameter Value
Population size 500
Maximum number of generations 1000
Maximum number of generations without improvement 10
The tabu length 8
Crossover probability 0.8
Tabu search probability 0.2

efficiency of  HGTSA. Moreover, we observe that the RPD 
for the instances increases when the problem size increases. 
However, this increase can be due to degradation in the 
performance of  HGTSA due to increase in corresponding 
solution space. Since we do not know the corresponding 
optimal cost, we cannot judge accurately in this context.

Looking to the fifth and sixth columns, it is clear that as the 
problem size increases the HGTSA consumes most of  the 
solution time in comparison with GA while the HGTSA 
have a better solution in relation to GA. The last column 
of  Table 4 demonstrates the percentage of  cost savings 
attained by applying the integer multipliers policy in relation 

to common cycle time for HGTSA. The results of  the other 
problems show that synchronizing the supply chain at the 
integer multipliers policy results in a cost reduction that can 
reach 17.89% compared to the common cycle time policy.

CONCLUSIONS AND FUTURE EXTENSIONS

In this paper, we investigate the economic lot and delivery 
scheduling problem (ELDSP) for a three-stage supply 
chain. This problem is a combined lot sizing and sequencing 
problem. The supply chain includes multiple suppliers, 
multiple fabricators and only a single assembler. All of  
the parameters, such as demand rate, are deterministic 
and production setup times are sequence-independent. 
The common cycle time and integer multipliers policies 
are adapted as a replenishment policy for synchronization 
throughout the supply chain. Since the problem is NP-hard, 
we propose a hybrid metaheuristic algorithm (HGTSA) 
which combines a genetic algorithm with tabu search to 
find the solution in large-scale problems. The results of  
computational experiments demonstrate the efficiency of  
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the proposed algorithm. A cost reduction up to 17.89% can 
be accomplished by applying the integer multipliers policy 
rather than the common cycle time policy to synchronize 
the supply chain.

Several extensions to the research presented in this paper 
could be conducted. The integer power of  two multiplier 
mechanism could be investigated to synchronize the supply 
chain. The proposed inventory model representing the 
integer multiplier mechanism can be solved by a more 
efficient approach. Developing another optimization 
algorithm to solve this model, instead of  metaheuristic will 
certainly shorten the solution time and facilitate handling 
larger supply chain configurations.
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