Evaluation of Functional Results in the Management of Supracondylar Fracture of Humerus in Children by Various Methods

K Kishore Kumar¹, R Jaisingh²*, J Venkateshwarlu³

¹Associate Professor, Department of Orthopaedics, MGM Hospital, Kakatiya Medical College, Warangal, Telangana, India, ²Associate Professor, Department of Orthopaedics, MGM Hospital, Kakatiya Medical College, Warangal, Telangana, India, ³Professor and Head, Department of Orthopaedics, MGM Hospital, Kakatiya Medical College, Warangal, Telangana, India

Abstract

Introduction: Supracondylar fractures of Humerus are one of the most common fractures in pediatric age group. The aim of the study was to evaluate the functional results in the management of supracondylar fracture of humerus in children by various methods.

Materials and Methods: This study was conducted at the Orthopaedics department of Mahatma Gandhi Memorial Hospital, Warangal. This was a 2 years prospective, longitudinal, hospital based, observational study and its outcomes. Participants were a total of 30 children aged 0 to 14 years (21 males, 9 females) diagnosed with supracondylar fracture of humerus.

Results: Patients were assessed by Flynn’s criteria. Results were excellent in 70%, good in 20%, fair in 6.66%, and poor in 3.33%.

Conclusion: Closed reduction and external immobilization are reserved for Gartland’s type 1 and select type 2 fractures. In unstable type 2 and type 3, closed or open reduction and K-wire fixation give better results.

Key words: Flynn’s criteria, Open reduction and internal fixation, Percutaneous pinning, Supracondylar fracture of humerus, Traction

INTRODUCTION

At the end of 19th century, Sir Robert Jones echoed the opinion of that era about elbow injuries. “The difficulties experienced by surgeons in making an accurate diagnosis; the facility with which serious blunders can be made in treatment and prognosis; and fear shared by so many, of subsequent limitations of function, serve to render injuries in the neighborhood of elbow less attractive than might otherwise prove.” These concerns are applicable even today.

Supracondylar fractures of humerus account for 50–70% of fractures around the elbow in children[1] and 12–17% of all pediatric fractures. Peak incidence is from 5 to 8 years of age.[2]

The medial and lateral columns of the distal humerus are connected by a thin segment of bone between the olecranon fossa posteriorly and coronoid fossa anteriorly, resulting in high risk of fractures of this area. The metaphysis is thinned both anteriorly by coronoid fossa and posteriorly by olecranon fossa to accommodate the upper end of the ulna during flexion and extension, respectively. The metaphyseal flare of the distal humerus connects the diaphysis of the humerus to the epiphysis.

The most common mechanism of injury is when a patient falls on the outstretched hand with the elbow fully extended. The olecranon engages with the olecranon fossa and acts as a fulcrum, while anterior capsule simultaneously provides a tensile force on distal humerus at its insertion. The flexion

*Corresponding Author: Dr. R Jaisingh, Associate Professor, Department of Orthopaedics, Mahatma Gandhi Memorial Hospital, Warangal-506 007, Telangana, India. Phone: +919848057606. E-mail: dr.rathod.jaisingh@gmail.com
injury results from direct trauma to the posterior aspect of the distal humerus or falling onto the point of flexed elbow.

Supracondylar fractures are known for its complications because of the inherent fracture instability, close vicinity of the brachial artery and major nerves of extremity, poor radiographs, and poor interpretations of reduction.

The following are treatment modalities available in the management of supracondylar fracture of humerus
1. Closed reduction and immobilization in an above elbow plaster cast
2. Closed reduction and percutaneous pinning (CRPP) under image intensifier
3. Open reduction and internal fixation (ORIF) with k wires (2 lateral pins, one medial pin and one lateral pin [cross pinning], two lateral, and one medial pin)
4. Lateral external fixator
5. Overhead olecranon wingnut traction
6. Straight arm skeletal traction.

We conducted a study with the purpose of assessing the results and functional outcomes of management of supracondylar fracture of humerus by various methods in our institution.

METHODOLOGY

This study comprises 30 patients who are diagnosed to have a supracondylar fracture of humerus admitted in Mahatma Gandhi Memorial Hospital (Tertiary care institution at Warangal, Telangana state) from December 2016 to November 2018.

All patients and their parents were informed about the study, and their consent was obtained about their inclusion in this study. Ethical approval was taken from the Institutional Ethics Committee.

Inclusion Criteria
Age of patient 1–14 years was included in the study.

All types of supracondylar fracture of the humerus.

Exclusion Criteria
The following criteria were excluded from the study:
• Age of patient above 14 years.
• Patient with supracondylar fracture having an intercondylar extension.
• Floating elbow injuries.
• Patient presenting with infection at the site of fracture.
• Patient not seeking treatment according to our protocol.

Data Recording (Clinical and Radiological)
As soon as, the child is admitted in hospital with elbow injuries, a detailed careful history is elicited from patients and from their parents in young children, with regard to mode of injury and time since injury. A physical examination was conducted and evaluation of patients was done in terms of swelling at elbow, deformity, painful range of motion (ROM), closed or open fracture, and puckering of the skin. Presence or absence of radial pulse, nail bed capillary refill time and signs of compartment syndrome, neurological status in radial, median, and ulnar nerve territories and other associated musculoskeletal injuries.

An initial radiological evaluation was done by obtaining anteroposterior and lateral views of affected elbow [Figure 1a], and after manipulation with or without pinning, jones view was evaluated.

In this study, supracondylar fractures of the humerus were classified according to Gartland’s classification. There are two types of fractures, extension type (96–98%) and flexion type (2–4%) depending on the sagittal tilt of the distal fragment.
• Type 1 – Undisplaced
• Type 2 – Displaced with intact posterior cortex, may be angulated or rotated
• Type 3 – Displaced with no cortical contact
 • 3a – posteromedial
 • 3b – posterolateral.

In the meantime, analgesics were given and fracture part was splinted temporarily [Figure 1b]. Before surgery, the necessary laboratory investigations were done.

Management Protocol
The protocol was drawn according to the type of fracture.

Type 1 fractures – The affected limb was immobilized in above elbow posterior splint with elbow in ≤90° flexion and forearm in neutral rotation. Cuff and collar were applied. The patient was reviewed after 3 days and if any loosening of splint was seen, it was corrected with instructions to review after 3 weeks. At the end of 3 weeks, splint was removed, and X-rays were repeated to assess the fracture healing. The patient was advised to do active ROM exercises at the elbow.

Type 2 fractures – under general anesthesia, closed reduction was carried out by giving longitudinal traction to the forearm by the surgeon and counter traction to the proximal arm by the assistant. The elbow is flexed up to 90° and the distal fragment is pushed anteriorly. The further elbow was flexed up to 120° and forearm was fully pronated and distal vascular status was assessed. After reduction has
been confirmed by fluoroscopy, it can be maintained by
two methods.

a. To apply an above elbow plaster splint at 120° of
flexion and patient was given cuff and collar for
3 weeks.

b. If the fracture is unstable (if there is medial column
commination), or if the reduction cannot be
maintained without excessive flexion, which may
place vascular structures at risk; the fracture was fixed
with percutaneous K wires (cross pins or two lateral
pins)[6,7] and an above elbow plaster splint was applied
for 3 weeks. The patient was discharged at 24 h and
advised to review after 3–4 weeks. X-ray was repeated
and if healing was satisfactory, slab was removed and
ROM exercises of elbow encouraged.

Advantages of Percutaneous Pinning

1. It is done without opening the fracture
2. Less chances of infection
3. Provides strong fixation and stability in any position
 of elbow
4. Elbow can be mobilized early.

Technique of ORIF

Under general anesthesia, the patient
was placed in supine position on the operation tablet after
which closed reduction was done by giving longitudinal
traction applied to forearm with an elbow in extension and
forearm in supination. Counter-traction to the proximal
arm was provided by the assistant. With the traction
being maintained, the medial or lateral displacement was
corrected by applying a varus or valgus force at the fracture
site. The displacement and angulation of the distal fragment
were corrected by flexing the elbow, at the same time a
posteriorly directed force was applied to anterior portion
of arm over the proximal fragment and then anteriorly
directed force was applied over the distal fragment with
thumb on the olecranon and elbow is hyper flexed and
forearm is pronated to maintain reduction. Reduction is
checked under fluoroscope by taking an anteroposterior
view and lateral view of elbow. Maintenance of reduction
was achieved by passing one lateral pin with elbow in
flexion and one medial pin with an elbow in extension (to
avoid ulnar nerve injury). Once the pins were in place, the
fixation was checked under fluoroscope [Figure 1c]. After
leaving about 1 cm of pins outside the skin, the pins were
bent and cut off and a well-padded posterior above elbow
slab was applied with elbow flexed to ≤90° flexion, ensuring
distal vascularity.

In the post-operative period, the limb was kept elevated.
Antibiotics and analgesics were given for 3–5 days. Dressing
was changed usually on 2nd, 5th, and 7th day. Sutures were removed on the 10th day. Posterior slab
was reapplied and the patient was asked to review after
3–4 weeks. X-ray was taken and if evidence of union is
present, K-wires were removed, and ROM exercises of elbow encouraged.

Type 3 fractures – Under general anesthesia, closed
reduction of fracture was done and fracture was fixed with
percutaneous K-wires, similar to the technique described
for type 2 fractures.

Indications for ORIF were:

1. 2–3 attempts of failed closed reduction
2. When closed reduction is unsatisfactory
3. If the swelling of elbow is grotesque, that closed
 reduction cannot be maintained
4. Type 3 fractures with puckering of the skin
5. Open fractures that require irrigation and debridement

Follow-Up Protocol

The patients were advised to attend outpatient department
at regular intervals (3 weeks, 6 weeks, 3 months, 6 months,
and 1 year), for checkup and to note the progress of union (radiological) [Figures 1d,e] and movements at elbow, onset of any deformity (clinical). ROM [Figure 1f] and carrying angle [Figure 1g] were measure by goniometer.

OBSERVATIONS AND RESULTS

In the present study, the results were evaluated according to Flynn's criteria[8] which is based on change in carrying angle and loss of movement after treatment.

<table>
<thead>
<tr>
<th>Flynn's criteria</th>
<th>Cosmetic factor (loss of carrying angle in degrees)</th>
<th>Functional factor (motion loss in degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
<td>Excellent</td>
<td>0–5</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>6–10</td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>11–15</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>Poor</td>
<td>>15</td>
</tr>
</tbody>
</table>

Franke et al.[9] in study of 106 patient with displaced supracondylar fracture of humerus treated with CRPP showed 85.7% with very good to good results, 10.7% with satisfactory results, and 3.6% with unsatisfactory results.

Ababneh et al.[10] in his retrospective study of 135 patients with displaced supracondylar fracture humerus treated with three different methods, the results of CRPP were superior with excellent and good results in 87% patients and poor results in 8% patients.

Boparai et al.[11] studied 50 cases of supracondylar fracture and found 80% had good results and 20% had unsatisfactory results in ORIF group compared to 44% unsatisfactory results in the closed reduction and percutaneous pining group.

In the present study, out of 30 patients, 90% were good to excellent results and 10% proved fair and poor results, according to Flynn’s criteria.

Sex Distribution

Pirone et al.[13] in their study of 230 patient with a supracondylar fracture of humerus showed that boys (119) were affected more than girls (111).

D’Ambrosia in his series found the incidence of supracondylar fracture in males is 63% and females are 37%.

In the present study, the incidence is 70% in males and 30% in females [Table 2].

Incidence of Fracture type: (Gartland’s Classification)

Pirone et al. studied that 230 cases of supracondylar fracture and observed 137 were type three fractures and 93 were type 2 fractures.

In type 3 fractures, 94 cases were posteromedial displacement and 22 were with posterolateral displacement and 21 with direct posterior displacement.

Mehlman et al.[14] during the study of operative management of supracondylar fracture of humerus in children found that 77.4% were type three fractures and 18.3% were type 2 fractures.

In the present study, 10% were type 1 and type 2 is 26.66% and type 3 is 63.33% [Table 3].

Side Involvement

D’Ambrosia[8] found that the involvement of left elbow was 64% and the right elbow was 36%. Ahmed et al.[16] in their series showed a predominance of the left elbow.

Table 1: Distribution based on age

<table>
<thead>
<tr>
<th>Age in years</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>5–8</td>
<td>13</td>
<td>43.33</td>
</tr>
<tr>
<td>9–12</td>
<td>11</td>
<td>36.66</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: Distribution based on sex

<table>
<thead>
<tr>
<th>Sex</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>21</td>
<td>70</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3: Distribution based on the type of fracture

<table>
<thead>
<tr>
<th>Type of fracture</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Type 2</td>
<td>8</td>
<td>26.66</td>
</tr>
<tr>
<td>Type 3</td>
<td>19</td>
<td>63.33</td>
</tr>
</tbody>
</table>
In our study, the left side was involved in 73.33% and the right side was 26.66% [Table 4].

The incidence in the present study is consistent with the above series.

Treatment Modality Employed [Table 5]

Traction was not used in the management of patients in our study, as its popularity has decreased due to concerns of cubitus varus, pin complications, compartment syndrome and prolonged stay in the hospital though Maffulli et al.[17] and Piggot et al.[18], reported excellent results in their case series of cases managed by traction.

6 cases were treated by closed reduction and cast application. 17 cases were treated by closed reduction and percutaneous pinning. 7 cases were treated by open reduction and K-wire fixation.

Pin Construct

The optimal method of pin fixation varies among the authors and convincing evidence regarding pin construct is lacking in literature.

Swenson, Casiano and Flynn used two pins: one medial and one lateral. Arino used two lateral pins.

Fracture geometry, stability of fixation and surgeons preference come into consideration with regards to pin configuration. In present study of 30 cases, we fixed 24 cases of supra condylar fracture of humerus and our preferred construct was cross pinning as it provides biomechanically stable construct.[19]

We did 1 lateral and 1 medial pin fixation in 19 cases, 2 lateral pins in 2 cases and 2 lateral and 1 medial pin in 3 cases [Table 6].

Pin Tract Infection

Pirone et al. studied 230 cases of displaced supracondylar fracture of the humerus and observed that in 78 cases treated with CRPP, 2 cases had pin tract infection.

Cramer et al.[20] in his retrospective study of 29 children with supracondylar fracture of humerus; treated with CRPP in 15 children and open reduction and pinning in 14 children, only one patient in CRPP showed superficial infection.

Lejman et al.[21] showed no case of pin tract infection in 20 cases of supracondylar fracture of humerus treated with CRPP.

In the present study, one patient had evidence of pin tract infection in 7 cases treated with open reduction and pinning [Table 7]. Infection was treated by antibiotics and regular dressings.

Cubitus Varus

Topping et al.[22] showed the incidence of cubitus varus in one patient out of 47 cases treated with CRPP.

Table 4: Distribution based on the side affected

<table>
<thead>
<tr>
<th>Side</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>8</td>
<td>26.66</td>
</tr>
<tr>
<td>Left</td>
<td>22</td>
<td>73.33</td>
</tr>
</tbody>
</table>

Table 5: Distribution based on treatment modality

<table>
<thead>
<tr>
<th>Treatment modality</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Closed reduction and cast application</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Closed reduction and percutaneous pinning</td>
<td>17</td>
<td>56.66</td>
</tr>
<tr>
<td>Open reduction and K wire fixation</td>
<td>7</td>
<td>23.33</td>
</tr>
</tbody>
</table>

Table 6: Distribution based on pin construct

<table>
<thead>
<tr>
<th>Type of construct</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 lateral pins</td>
<td>2</td>
<td>8.33</td>
</tr>
<tr>
<td>1 lateral pin and 1 medial pin</td>
<td>19</td>
<td>79.16</td>
</tr>
<tr>
<td>2 lateral and 1 medial pin</td>
<td>3</td>
<td>12.50</td>
</tr>
</tbody>
</table>

Table 7: Distribution of incidence of post-operative complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>Number of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubitus varus deformity</td>
<td>1</td>
<td>4.16</td>
</tr>
<tr>
<td>Pin tract infection</td>
<td>1</td>
<td>4.16</td>
</tr>
<tr>
<td>Nerve injury</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proximal migration of pin</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Restriction of movements</td>
<td>2</td>
<td>8.33</td>
</tr>
</tbody>
</table>

Table 8: Final results

<table>
<thead>
<tr>
<th>Result</th>
<th>According to loss of motion in degrees</th>
<th>According to loss of carrying angle in degrees</th>
<th>Average percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of patients</td>
<td>Percentage</td>
<td>Number of patients</td>
</tr>
<tr>
<td>Excellent</td>
<td>21</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Good</td>
<td>6</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Fair</td>
<td>2</td>
<td>6.66</td>
<td>2</td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
<td>3.33</td>
<td>1</td>
</tr>
</tbody>
</table>
Kennedy et al. observed two cases of cubitus varus among 40 cases of displaced supracondylar fracture in children. In our study, two patients developed cubitus varus. This deformity is seen with one patient in open reduction and pinning group [Table 7].

Proximal Migration of K Wire

Pirone et al. observed the migration of one lateral pin, out of 96 cases treated with CRPP. In the present study, we did not see this complication [Table 7].
RESULTS

Patients were assessed by Flynn’s criteria. Results were excellent in 70%, good in 20%, fair in 6.66% and poor in 3.33% [Table 8].

CONCLUSION

The outcomes of treatment of the supracondylar fracture of humerus in children depend on perfect anatomical reduction and stable immobilization.

In type 1 undisplaced fractures, treatment is immobilization in an above elbow plaster splint for 3–4 weeks.

In type 2 fractures

• Closed reduction and immobilization in above elbow plaster splint is done provided no gross angulation at the fracture site and if the reduction is stable

• Closed reduction and fixation with percutaneous k wire fixation (CRPP), if fracture shows the great collapse of the weakened medial column and if the fracture is unstable.

In type 2 and 3 fractures, where closed reduction is not satisfactory and also in open fracture, treatment is by open reduction and fixation with K wires, one from medial and one from the lateral side of lower end of the humerus (cross pins) or 2 lateral pins.

In the present study, the above protocol of treatment of supracondylar fractures of the humerus has given good cosmetic and functionally satisfactory results.

REFERENCES

Source of Support: Nil, Conflict of Interest: None declared.