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So, in this study symmetric thermal buckling analysis of  
orthotropic annular graphene sheets with non-linear strain 
is analyzed. The effects of  small scale are considered using 
non-local elasticity theory.

GOVERNING EQUATIONS

Figure 1 A shows the annular plate and its model on elastic 
foundation. Based on the first-order shear deformation 
theory, the displacement field is defined as equation [4]:

 = +0( , , ) ( ) ru r z u r z  (1)

 =( , , ) 0v r z  (2)

 = 0( , , ) ( )w r z w r  (3)

Where u, v and w are displacement components of  each 
point at a distance z from the median plane, respectively, 
in the direction r, θ and z. Median plane displacement 
components are u0 and w0 which are the function of  variable 
r and the expression ϕ0 is the rotation elements about θ.

Using the assumptions of  Von Karman nonlinear 
relationships strain- displacement, strain components base 
on displacement are obtained [4]:

INTRODUCTION

Because experimental observations requires high-cost and 
complicate efforts, theoretical models such as atomistic 
methods have been used for identifying the properties of  
Nano structures [1]. The governing relations from these 
methods such as Eringen’s nonlocal elasticity, are relatively 
simple and for small-scale effects in nano-scale structures 
have been considered. Eringen revealed that in nonlocal 
continuum mechanics, stress is dependent on strain in all 
over of  continuum environment [2]. Recently, buckling 
analysis has attracted the attentions of  scientists [3,4,5]. 
Among the recent similar studies, the paper of  Jabbarzadeh 
and Sadeghian can be mentioned which they consider 
the buckling behavior of  circular Nano plates under 
mechanical load on elastic foundation. In their article, 
results of  analyses based on local and non-local theories 
are compared [5].
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The governing equation of  nonlocal Continuum mechanics 
theory is presented by Eringen as follows [2]:

2− ∇ =NL NL L     (7)

 is nonlocal coefficient.  NL is nonlocal stress tensor and  
L is the local stress tensor, So:
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E1 and E2 are elasticity modulus in directions 1 and 2 and 
v12 and v21 are Poisson’s ratio in pre-mentioned directions 
and G12 the shear modulus. The stress resultants can be 
defined as [2]:
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Relations between local and non-local force, moment and 
shear force components can be expressed as:
1
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Ni
l , M i ri

l , ( , )=  and l
rQ  are the local in-plane force, 

moment and the shear force resultants, respectively:
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To determine the equilibrium equations, the principle of  
minimum potential energy is used:

δ δ δΠ Ω= + ≅U 0  (19)

Where Π is the total potential energy of  the system, U is 
strain energy and Ω is potential energy of  the system of  
external loads. Which are defined as follow:
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Figure 1: Annular plate and its model on elastic foundation.
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N is radial in-plane load and Kw is the Winkler coefficient 
of  elastic foundation. The equilibrium equations in terms 
of  the nonlocal stress resultant are obtained as follows:
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The equilibrium equations in terms of  local stress resultants 
are obtained as:
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In buckling analysis, neighbor equilibrium estate method is 
used. The equilibrium equations are obtained from small 
variations near equilibrium estate. The displacement, force 
and torque resultants are:
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0 is for the pre-buckling and 1 represents small changes in 
steady state. Solving pre-buckling equations:

N N Nr
0 0= = −θ  (30)

Furthermore the stability equations are obtained as:
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For convenience, non-dimensional expressions are defined 
as:
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Eventually, a unique relation is proposed which simply 
relates thermal and mechanical buckling analysis:

∆T N v v
vT= −

+
( )
( )
1
1

12 21

12   (35)
Where in equation (35), ΔT is critical buckling temperature 
difference and N is critical mechanical load.

In order to solve the nonlinear eigenvalue equation, an 
iterative procedure should be used for solving and the 
critical temperature rise values from the two subsequent 
iterations to satisfy convergence criteria as[6]:
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 (36)
Where ε0 is a small value and in the present analysis, it is 
taken to be 10-4 .

NUMERICAL RESULTS

To determine the numerical results, the orthotropic 
annular single layer, thickness h=0.335 nm, outer 
radius r0=5 nm, elasticity modulus E1=1765 Gpa, 
E2=1588 Gpa also v12=0.3 and T K= −1 1 10 16. * ( / )  are 
considered Poisson and thermal coefficients. In figures 
which does not mention directly, R=0.2, δ=0.1 and 
Kw=1(GPa/nm) are considered. Differential quadrature 
method is used [7]. Since result of  numerical differential 
quadrature method is dependent on the number of  
nodes, so the convergence results of  the present study 
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is illustrated in Figure 2. The desired convergence is 
achieved after 9 nodes.

First to check the accuracy of  the results, non-dimensional 
thermal parameter is defined as: λ ν α= +12 1 0

2( ) ( / ) .∆T r hT  
First the isotropic circular plate is considered and compared 
with references. Based on Table 1 the present results are 
in good harmony with those reported.

Variations of  critical buckling temperature to nonlocal 
parameter for various conditions are plotted in Figure 2. 
As can be seen, by increasing the nonlocal parameter, ∆T 

decreases. Moreover, by increasing nonlocal parameter, 
the values of  ∆T for different conditions approach to 
certain value. Also, it can be concluded by increasing 
the rigidity of  plates (in terms of  boundary condition), 
∆T increases. It is also apparent that elastic foundation 
increases the critical buckling temperature difference of  
the plate.

Figures 4,5,6 and 7 illustrate changes of  critical buckling 
temperature to nonlocal parameter for various radius ratios 
in C-C, S-S, S-C and C-S. As can be seen from these figures, 
by increasing nonlocal parameter, ∆T decreases. On the 
other hand, by increasing the radius ratio, ∆T increases, 
too. In other words, by increasing plates annularity, ∆T 
increases because the plate stiffness increases. While in C-C 
condition values of  ∆T are the highest, in S-S condition 
are the lowest.

Changes of  critical buckling temperature to thickness 
for various nonlocal parameters in C-C, S-S, S-C and 
C-S are shown in Figures 8,9,10 and 11. As can be 
illustrated from these graphs, by increasing nonlocal 
parameter, ∆T decreases. On the other hand, by increasing 

Figure 2: Convergence of ∆T for different conditions

Table 1: Comparison of present results (for 
circular plates) of thermal buckling parameter with 
references for different δ
B.C Reference δ

0.001 0.01 0.05 0.1
C Present 14.681 14.675 14.529 14.09

[8] 14.6842 14.6842 14.6842 14.6842
[9] 14.681 14.675 14.529 14.09
[10] 14.681 14.674 14.501 13.988

S Present 4.197 4.197 4.185 4.148
[8] 4.2025 4.2025 4.2025 4.202
[9] 4.197 4.197 4.1852 4.148
[10] 4.197 4.197 4.1844 4.144

Figure 3: Changes of critical buckling temperature to nonlocal 
parameter for various conditions

Figure 4: Changes of critical buckling temperature to nonlocal 
parameter for various radius ratio (C-C)

Figure 5: Changes of critical buckling temperature to nonlocal 
parameter for various radius ratio (S-S)
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thickness,increases, too.values in C-C are the highest but 
in S-S are the lowest.

From Figure 12, it can be observed that in local 
state (μ=0) and for various boundary conditions are 
higher than nonlocal state and their values are relatively 
stable.

CONCLUSIONS

In this part, significant results of  nonlinear symmetric 
thermal buckling analysis of  annular graphene plates with 
nonlocal elasticity theory are mentioned as follow:
• By reduction in flexibility of  boundary conditions, the 

effect of  nonlocal parameter in the critical buckling 
temperature difference is more significant.

Figure 6: Changes of critical buckling temperature to nonlocal 
parameter for various radius ratios (S-C)

Figure 7: Changes of critical buckling temperature to nonlocal 
parameter for various radius ratios (C-S)

Figure 8: Changes of critical buckling temperature to thickness 
for various nonlocal parameters (C-C)

Figure 9: Changes of critical buckling temperature to thickness 
for various nonlocal parameters (S-S)

Figure 10:  Changes of critical buckling temperature to 
thickness for various nonlocal parameters (S-C)

Figure 11: Changes of critical buckling temperature to 
thickness for various nonlocal parameters (C-S)
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• The increase of  nonlocal parameter, will reduce the 
critical buckling temperature difference.

• Elastic foundation increases the critical buckling 
temperature difference of  the plate.

• By increasing plates annularity, ∆T increases, because 
the plate stiffness increases.

• By increasing thickness, the critical buckling temperature 
difference, increases.

• In local analysis, ∆T is higher than nonlocal analysis. In 
other words, local analysis overestimates values of  ∆T.
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