Comparative Effect of Nifedipine, Nitroglycerine, and Metoprolol in Attenuating Rise in Pulse Rate, Blood Pressure, and Cardiac Arrhythmias during Laryngoscopy and Intubation

Kailash Chandra Sharma¹, Sujata Singh²

¹Associate Professor, Department of Anaesthesiology, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, Uttar Pradesh, India, ²Associate Professor, Department of Pharmacology, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, Uttar Pradesh India

Abstract

Background: During laryngoscopy and intubation rise in pulse rate, blood pressure (BP), and cardiac arrhythmias occurs.

Objective: The aim of the present study was to attenuate the rise in pulse rate, BP, and cardiac arrhythmias due to laryngoscopy and intubation with nifedipine, nitroglycerine (NTG), and metoprolol.

Materials and Methods: A total of 40 patients undergoing surgery were randomly divided into four groups. Group 1 control group: No medication, Group 2: NTG 1 mg sublingually given 2 min before intubation, Group 3: Nifedipine gelatin capsule 10 mg sublingually 20 min before intubation, Group 4: Injection metoprolol 2 mg intravenous (IV) 5 min before intubation.

Result: Metoprolol was more effective in attenuating the rise in BP, pulse rate, and cardiac arrhythmia.

Conclusion: All three drugs significantly attenuates the rise in pulse rate, BP, and cardiac arrhythmias during laryngoscopy and in intubation, but metoprolol 2 mg IV 5 min before intubation was more effective than other two drugs.

Key words: Intubation, Laryngoscopy, Metoprolol, Nifedipine, Nitroglycerine

INTRODUCTION

Despite the emergence of new airway devices in the recent years, rigid laryngoscopy and tracheal intubation still remains the gold standard in airway management. In 1940, Reid and Brace first described the hemodynamic response to laryngoscopy and intubation both of which are known to cause sympathoadrenal stimulation.¹ These procedures lead to increase in heart rate (HR), blood pressure (BP), intraocular, and intracranial pressure. The arterial hypertension is due to increase in cardiac output rather than an increase in systemic vascular resistance,

and is associated with the transient rise in central venous pressure. Arrhythmias also tend to occur. These changes are of little significance in normal healthy patients but may be dangerous in cases of coronary artery diseases, raised intracranial pressure, intracranial aneurysm, partial or complete heart block, and hypertensive patients.²⁻⁴ Therefore, many drugs are often used in combination with the primary anesthetic in an attempt to decrease these hemodynamic responses associated with intubation so as to limit patient risk.^{5,6} The present study was done to compare the effect of nifedipine and nitroglycerine (NTG) in attenuating cardiovascular response due to laryngoscopy and intubation.

MATERIALS AND METHODS

The study was conducted on 40 patients American Society of Anesthesiologists Grade I and II undergoing general anesthesia.

Corresponding Author: Sujata Singh, Department of Pharmacology, Shri Ram Murti Smarak Institute of Medical Sciences, Bhojipura, Bareilly, Uttar Pradesh, India. Phone: +91-9359169974. E-mail: sujatasinghdr@rediffmail.com

- The patients were randomly divided into four groups.
 - Group 1: Total number of patients studied 10. This group was considered as a control group and no medication was given
 - Group 2: Total number of patients studied 10. Patients were given nitroglycerine 1 mg sublingually 2 min before induction of anesthesia
 - Group 3: Total number of patients studied 10. Patients were given nifedipine gelatin capsule 10 mg sublingually 20 min before induction of anesthesia
 - Group 4: Total number of patients studied 10. Patients were given metoprolol 2 mg intravenous (IV), 5 min before induction of anesthesia.

Investigation

All the patients were routinely investigated for:

- Hemoglobin
- Total leucocyte count
- Differential leukocyte count
- Erythrocyte sedimentation rate
- Blood group and Rhesus factor
 - Blood sugar a. Fasting
 - b. Postprandial
- Blood urea
- Serum creatinine
- Electrocardiography (ECG)

Procedure

Before subjecting the patients for the study, thorough clinical examination and laboratory investigations were done once again. Indication for surgery was noted and written informed consent was obtained.

All the patients were premedicated with 0.01 mg/kg glycopyrrolate and 1 mg/kg promethazine, intramuscular 30 min before surgery.

IV line was secured using dextrose normal saline/ringer lactate and pre-oxygenated for 5 min. Anesthesia was induced with thiopentone sodium 4-7 mg/kg, over 20 s and when eyelash reflex abolished, suxamethonium 1-2 mg/kg was given.

When fasciculation due to suxamethonium disappeared patients were intubated with cuffed lubricated (with xylocaine 2% jelly) endotracheal tube, after laryngeal spray with xylocaine 1%. After the procedure following, four observations were recorded for 15 min *viz*. baseline, after induction at 3, 5, 10, and 15 min after intubation.

- Pulse rate
- Arterial BP

- HR and rhythm by ECG
- Oxygenation
- Input-output charting

After laryngoscopy and intubation anesthesia was maintained with N_2O 66%, oxygen 33%, and vecuronium 0.05 mg/kg body weight.

OBSERVATIONS AND RESULTS

Demographic profile is shown in Tables 1 and 2 which shows that most of the patients belonged to age group 30-40 years followed by those in 40-50 years. Mean weight of the male patients in control and study groups were 59.00 \pm 2.70 kg and 61.42 \pm 5.04 kg, respectively, while mean weight of the female patients in control and study groups were 47.83 \pm 3.92 kg and 52.39 \pm 6.74 kg, respectively. There was no significant difference in the demographic parameters between different groups.

Table 3 shows that there was fall in mean systolic arterial pressure after induction of anesthesia in all four groups, *viz.*, control, nifedipine, NTG, and metoprolol. This

Table 1: Distribution of patients according to agein various groups

Age	Nifedipine	Metoprolol	NTG	Control
<30	1	0	0	1
30-40	8	3	4	6
40-50	1	4	2	3
50-60	0	1	2	0
>60	0	2	2	0

NTG: Nitroglycerine

Table 2: Distribution of patients according toweight

Groups	Male - weight (kg)	Female - weight (kg)
Control	59±2.70	47.83±3.92
Study	61.42±5.04	52.39±6.74

Table 3: Systolic BP at different times in variousgroups (mean ± SD)

Time	Group 1	Group 2	Group 3	Group 4
Baseline	123.80±9.86	120.20±8.36	119.00±9.12	121.00±9.82
Induction	85.60±8.53	86.4±8.24	81.40±9.38	84.8±8.37
1 min after	149.00±8.89	132±8.98	135±9.26	139±9.58
intubation				
3 min	139±9.58	131±9.62	132±8.69	136±9.36
5 min	128±9.43	127±9.28	128±9.34	128±9.58
10 min	126±8.96	123±8.69	124±8.74	126±9.84
15 min	124±9.47	120±8.49	121±9.58	123±8.88

BP: Blood pressure, SD: Standard deviation

fall was statistically insignificant (P > 0.05) in control, metoprolol, and NTG groups, but significant only in nifedipine group.

There was also immediate increase in mean systolic arterial pressure after laryngoscopy and intubation in all four groups *viz*. control, nifedipine, NTG, and metoprolol. This rise was significant in the control group (P < 0.01), while in nifedipine, NTG, and the metoprolol groups rise was slight but statistically insignificant (P > 0.05). On comparing various groups, significant difference was observed between the control group and treatment groups (P < 0.05), suggesting that all the groups were effective in attenuating the increased BP response of intubation.

Further, there was a decline in mean systolic arterial pressure in serial recording at 3, 5, 10, 15 min after intubation in all four groups (Table 3).

Similar to the response on systolic BP, there was a decrease in mean diastolic arterial pressure after induction of anesthesia in all four groups *viz*, control, nifedipine, NTG, and metoprolol (P < 0.05) (Table 4).

Maximum increase in mean HR after intubation was observed in control group, compared to the treatment groups and the difference in response between the control and treatment groups was statistically significant (P < 0.05) (Table 5). The response was maximum in the metoprolol group.

Cardiac dysrhythmias seen in 4 of the control group and 1 each in nifedipine and NTG group, but there was no cardiac dysrhythmias in the metoprolol group. Cardiac

 Table 4: Mean changes of diastolic BP at different

 times in various groups

	-			
Time	Group 1	Group 2	Group 3	Group 4
Baseline	86.8±5.46	82.0±5.53	86.00±5.64	85.6±5.59
Induction	85.6±5.85	81.6±5.78	86.4±4.97	84.2±5.28
1 min after intubation	94.7±5.76	94.4±5.68	93±5.78	96±5.26
3 min	92.3±5.91	91.83±4.93	92±5.52	92±5.36
5 min	90±5.36	90±5.74	88±5.97	90±5.42
10 min	88±5.92	88±5.26	86±4.85	89±5.36
15 min	86±4.92	83±5.83	84±5.66	87±5.74

BP: Blood pressure

dysrhythmias were found in the form of sinus tachycardia, premature ventricular contraction, decrease P-R interval (Details of ECG not shown).

DISCUSSION

Direct laryngoscopy and tracheal intubation cause an increase in BP and HR.⁶ This cardiovascular response is supposed to be due to reflex increase in sympathetic response to mechanical stimulation of the larynx and trachea. This leads to an average increase in BP of 40 50%, and a 20% increase in HR.⁷ Significant elevations in serum levels of norepinephrine and epinephrine subsequent to the laryngoscopy, with and without tracheal intubation, have been reported.⁸⁻¹⁰ The pressor response to laryngoscopy and intubation also increases myocardial oxygen requirement and risk of cerebrovascular accidents, and can also induce cardiac arrhythmias and pulmonary edema.¹¹⁻¹⁴ In the past, many drugs have been successfully used for attenuation of these responses.^{15,16}

The results of the present study shows that all the three drugs are effective in attenuating the cardiovascular response to laryngoscopy and intubation which is in correspondence with other studies which shows a similar type of response.¹⁷⁻²⁰

Our study also demonstrates that metoprolol was more effective in normalizing the HR and decreasing the chances of arrhythmia. This could be due to the release of renin from juxtaglomerular apparatus stimulated by the sympathetic system is blocked by metoprolol.²¹ Metoprolol also improves the relationship between cardiac oxygen supply and demand.²²

CONCLUSION

Hence, we concluded that all three drugs *viz*. nifedipine, NTG, and metoprolol, were able to attenuate the rise in pulse rate and BP due to laryngoscopy and intubation but not completely. NTG and metoprolol decreases the severity of tachycardia rise in BP, significantly and less fluctuations, during and after laryngoscopy, and intubation except nifedipine which cause significant tachycardia during laryngoscopy and intubation.

Table 5: Mean changes of pulse rate at different times in v	various groups
---	----------------

Groups	Baseline	Induction	1 min after intubation	3 min	5 min	10 min	15 min
Group 1	85±7.48	84±7.59	112±7.53	107±7.36	98±7.46	94±7.15	88±7.45
Group 2	86±7.26	78±7.46	98±6.98	92±7.48	92±7.51	88±6.97	86±7.26
Group 3	84±7.34	76±7.79	102±7.28	96±7.25	94±7.53	93±6.98	90±7.18
Group 4	83±7.89	68±7.58	88±7.59	83±7.95	79±7.82	78±6.95	76±7.39

REFERENCES

- Reid LC, Brace DE. Irritation of the respiratory tract and its reflex effect upon heart. Surg Gynaecol Obstet 1940;70:157-62.
- Prys-Roberts C, Greene LT, Meloche R, Foëx P. Studies of anaesthesia in relation to hypertension. II. Haemodynamic consequences of induction and endotracheal intubation. Br J Anaesth 1971;43:531-47.
- Masson AH. Pulmonary edema during or after surgery. Anesth Analg Curr Res 1964;43:440-51.
- 4. Braunwald E. Control of myocardial oxygen consumption: Physiologic and clinical considerations. Am J Cardiol 1971;27:416-32.
- Wycoff CC. Endotracheal intubation: Effects on blood pressure and pulse rate. Anesthesiology 1960;21:153-8.
- Stoelting RK. Circulatory changes during direct laryngoscopy and tracheal intubation: Influence of duration of laryngoscopy with or without prior lidocaine. Anesthesiology 1977;47:381-4.
- Bruder N, Ortega D, Granthil C. Consequences and prevention methods of hemodynamic changes during laryngoscopy and intratracheal intubation. Ann Fr Anesth Reanim 1992;11:57-71.
- Russell WJ, Morris RG, Frewin DB, Drew SE. Changes in plasma catecholamine concentrations during endotracheal intubation. Br J Anaesth 1981;53:837-9.
- Shribman AJ, Smith G, Achola KJ. Cardiovascular and catecholamine responses to laryngoscopy with and without tracheal intubation. Br J Anaesth 1987;59:295-9.
- Park BY, Jeong CW, Jang EA, Kim SJ, Jeong ST, Shin MH, *et al.* Doserelated attenuation of cardiovascular responses to tracheal intubation by intravenous remifentanil bolus in severe pre-eclamptic patients undergoing Caesarean delivery. Br J Anaesth 2011;106:82-7.
- Hodgkinson R, Husain FJ, Hayashi RH. Systemic and pulmonary blood pressure during caesarean section in parturients with gestational hypertension. Can Anaesth Soc J 1980;27:389-94.

- 12. Connell H, Dalgleish JG, Downing JW. General anaesthesia in mothers with severe pre-eclampsia/eclampsia. Br J Anaesth 1987;59:1375-80.
- Lawes EG, Downing JW, Duncan PW, Bland B, Lavies N, Gane GA. Fentanyl-droperidol supplementation of rapid sequence induction in the presence of severe pregnancy-induced and pregnancy-aggravated hypertension. Br J Anaesth 1987;59:1381-91.
- Miyake W, Oda Y, Ikeda Y, Tanaka K, Hagihira S, Iwaki H, *et al.* Effect of remifentanil on cardiovascular and bispectral index responses following the induction of anesthesia with midazolam and subsequent tracheal intubation. J Anesth 2010;24:161-7.
- 15. Morison DH. Anaesthesia and pre-eclampsia. Can J Anaesth 1987;34:415-22.
- Talebi H, Nourozi A, Fateh S, Mohammadzadeh A, Eghtesadi-Araghi P, Jabbari S, *et al.* Effects of oral clonidine premedication on haemodynamic response to laryngoscopy and tracheal intubation: A clinical trial. Pak J Biol Sci 2010;13:1146-50.
- Guazzi M, Olivari MT, Polese A, Fiorentini C, Magrini F, Moruzzi P. Nifedipine, a new antihypertensive with rapid action. Clin Pharmacol Ther 1977;22:528-32.
- Reves JG, Kissin I, Lell WA, Tosone S. Calcium entry blockers: Uses and implications for anesthesiologists. Anesthesiology 1982;57:504-18.
- Fassoulaki A, Kaniaris P. Intranasal administration of nitroglycerine attenuates the pressor response to laryngoscopy and intubation of the trachea. Br J Anaesth 1983;55:49-52.
- Zargar JA, Nagash IA, Gurcoo SA, Uddin M. Evaluation of the effect of metoprolol and esmolal on the pressure response during intubation in controlled hypertensive pt. Indian J Anaesth 2000;46:365-8.
- Hardman JG, Limbard LE, editors. Goodman and Gillman: The Pharmacological Basis of Therapeutics. 12th ed. New York: McGraw Hill Publications; 2011.
- Gurudatta KN, Kumara AB. Attenuation of cardiovascular responses to laryngoscopy and intubation by intravenous metoprolol. J Evol Med Dent Sci 2014;3:5392-400.

How to cite this article: Sharma KC, Singh S. Comparative Effect of Nifedipine, Nitroglycerine, and Metoprolol in Attenuating Rise in Pulse Rate, Blood Pressure, and Cardiac Arrhythmias during Laryngoscopy and Intubation. Int J Sci Stud 2015;3(4):44-47.

Source of Support: Nil, Conflict of Interest: None declared.