External Quality Assessment Scheme in Biochemistry: Four Years Experience as a Participating Laboratory

Ekta Tiwari¹, Saurabh Mishra², Shilpi Singh³, Madhubala Mishra⁴

¹Assistant Professor, Department of Pathology, Saraswati Medical College, Lucknow, Uttar Pradesh, India, ²Senior Resident, Department of Surgery, Saraswati Medical College, Lucknow, Uttar Pradesh, India, ³Tuitor, Department of Biochemistry, Saraswati Medical College, Lucknow, Uttar Pradesh, India, ⁴Tuitor, Department of Microbiology, Saraswati Medical College, Lucknow, Uttar Pradesh, India

Abstract

Background: The attainment of quality services in a laboratory requires a both internal and external quality control material. External quality assessment scheme (EQAS) programs are accepted by laboratories to assess the performance of their testing systems.

Aim: The goal of this study was to review EQAS results from time to time in an effort to improve the performance of the laboratory. It is an observational study done at pronounced NABL accredited hospital in Lucknow, from January 2012 to December 2015.

Materials and Methods: In the current study, we have evaluated EQAS test result of the past 4 years, from 2012 to 2015. We receive prepared masterpool of human serum as per the WHO recommended procedure, dispensing the correct volume into the vials which are stored at 2-8°C in the refrigerator. The lyophilized vials are sealed, well packed in thick envelopes, and distributed to all the participating laboratories. The laboratories are requested to reconstitute the sample, analyze, and enter the results. The test results are analyzed and documented.

Results: If outliers are seen, then the root cause analysis is done for those parameters.

Conclusions: This participation in EQAS over the last 4 years has helped us significantly to improve our laboratory services.

Key words: External quality assessment scheme, Laboratory, NABL

INTRODUCTION

Laboratory quality control (QC) is designed to detect, reduce, and correct deficiencies in a laboratory's internal analytical process before the release of patient results, to improve the quality of the results reported by the laboratory. QC is a measure of precision, or how well the measurement system reproduces the same result over time and under varying operating conditions. Laboratory QC material is usually run at the beginning

Access this article online			
IJSS www.ijss-sn.com	Month of Submission: 05-2016Month of Peer Review: 06-2016Month of Acceptance: 07-2016Month of Publishing: 07-2016		

of each shift, after an instrument is serviced, when reagent lots are changed, after calibration, and whenever patient results seem inappropriate.¹ QC material should approximate the same matrix as patient specimens, taking into account properties such as viscosity, turbidity, composition, and color. It should be simple to use, with the minimal vial to vial variability because variability could be misinterpreted as systematic error in the method or instrument. It should be stable for long periods of time and available in large enough quantities for a single batch to last at least 1 year. Liquid controls are more convenient than lyophilized controls because they do not have to be reconstituted minimizing pipetting error.¹

Interpretation of QC data involves both graphical and statistical methods. QC data are most easily visualized using a Levey-Jennings chart.²

Corresponding Author: Dr. Ekta Tiwari, D-5, Aishwarya Villa, M.P Udhyog, Sarvodaya Nagar, Kanpur, Uttar Pradesh, India. E-mail: unity.dr@gmail.com

MATERIALS AND METHODS

External quality assessment scheme (EQAS) samples from the Christian Medical College, Vellore, are received and processed at our laboratory.

For each year, every month's sample was shipped to our center for specific tests as recommended by the organizing laboratory. Each time, unknown samples packed with coolant were received within 3 days of dispatch. All the samples were handled as part of routine work samples, and recommended tests were performed by the concerned laboratory technician on duty. The tests are performed (Table 1) and mailed to the organizing laboratory within 1st week of the month.

Every year, a total of 12 samples for biochemistry are received. All tests were performed by dedicated staff using the conventional technique available in the department.

RESULTS

Our study reviewed EQAS result from a pronounced NABL accredited laboratory in Lucknow. The outliers seen month wise in 4 years are mentioned in Table 2.

As seen in Table 2 and Figure 1, most number of outliers were seen in the year 2014, i.e., 67 outliers and in the month of June, i.e., 11 outliers. The next most common year was 2015 with 53 outliers, then came 2013 with 40 outliers. Least number of cases was seen in the year 2012 with 38 outliers.

Outliers seen in the year 2012 are shown in Table 3. Alkaline phosphatase was seen to be most common parameter showing outliers, i.e., 9 times, then comes high-density lipoprotein (HDL) showing outlier 5 times. Next comes total protein, potassium, uric acid, and sodium, all showing outliers

Table 1: Tests with their methords			
S No.	Analyte	Method	
1.	Glucose	God-pod	
2.	Urea	Ned dye	
3.	Creatinine	Jaffe's kinetic	
4.	T.Bilirubin	Jendrassik	
5.	T-protein	Biuret	
6.	Albumin	Bcg	
7.	Calcium	Arsenazo	
8.	Uric acid	Enzymatic	
9.	Cholesterol	Chod-pap	
10.	Triglyceride	Enzymatic	
11.	Hdl cho	Direct method	
12.	Sodium	ISE	
13.	Potassium	ISE	
14.	AST	UV kinetic	
15.	ALT	UV kinetic	
16.	ALP	PNP AMP kinetic	

3 times. Total bilirubin, creatinine, serum glutamic pyruvic transferase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), calcium, and urea showed outlier 2 times.

Outliers seen in the year 2013 are shown in Table 4. In the year 2013, most number of outliers were seen in uric acid, i.e., 8. Then, comes total bilirubin showing 7 times outlier; next comes HDL showing 5 times outlier, sodium showed 4 times outlier. SGPT, glucose, alkaline phosphatase, SGOT, and triglyceride (TG) showed 2 times outlier. Total protein, urea, calcium, and cholesterol showed one time outlier.

Outliers seen in the year 2014 are shown in Table 5. In the year 2014, 9 times outliers were seen in HDL. Alkaline phosphatase, calcium, and uric acid showed 6 times outlier. Next comes total bilirubin and glucose which show 5 times outlier. SGPT, urea, and TG showed 4 times outlier. Next come sodium, potassium, SGOT, and albumin which show 3 times outlier. The least common outlier was seen in creatinine, i.e., 2.

Outliers seen in the year 2015 are shown in Table 6. In the year 2015, maximum number of an outlier was seen in total bilirubin, i.e., 8 times, then comes calcium showing 6 times outlier. 5 times outliers were seen in alkaline phosphatase, potassium, and glucose. 4 were seen in urea and uric acid.

Figure 1: Outliers seen in 4 years

Table 2 : Outliers seen in 4 years				
Month	2012	2013	2014	2015
Jan	3	5	6	7
Feb	3	3	2	4
March	5	5	4	4
April	3	1	6	9
May	1	4	5	3
June	3	1	11	4
July	5	3	3	3
August	No entry	3	6	3
Sept	2	1	7	2
Oct	2	4	7	5
Nov	5	6	6	4
Dec	6	4	4	5

Then, comes HDL and sodium with 3 times outlier. 2 times outliers were seen in albumin, SGOT, TG, and creatinine.

Root cause analysis was done to rule out the cause of outliers. Inter laboratory comparison was done with two other NABL labs. Root cause analysis was done following these few points:

- Temperature and reagents were checked
- QC was checked for whole week
- If outlier was seen then, QC was rerun and machine calibrated
- Engineer was called, and the machine was maintained if required.

DISCUSSION

An EQAS program plays an important role in improving the efficiency of a laboratory service, thereby optimizing the overall quality of a health care system. The program provides

Month	Outlier	VIS	
.lan	Total bilirubin	239	Jan
ouri	Sodium	200	
	Alkaline phosphatase	223	
Feb	Creatinine	231	
1.00		201	Feb
	HDI	200	1.00
March	Total protein	213	
Maron	HDI	400	March
	Sodium	226	inter of
	Potassium	323	
	Alkaline phosphatase	400	
Anril	Total protein	320	
, pin	SGPT	235	Anril
	Alkaline phosphatase	252	Mav
May	Alkaline phosphatase	400	way
June	Calcium	344	
Julie	Potassium	211	
	Alkaline phosphatase	400	June
July	Urea	400	July
oury	HDI	400	oury
	Alkaline phosphatase	337	
	SGOT	273	Augus
	Potassium	261	
August	No result was sent		
Sept	Alkaline phosphatase	312	Sept
oopt	HDI	393	Oct
Oct	Urea	257	000
	Uric acid	325	
Nov	Total bilirubin	263	
	Uric acid	371	Nov
	HDI	309	
	Alkaline phosphatase	216	
	SGOT	204	
Dec	Creatinine	286	
	Total protein	298	
	Calcium	336	Dec
	Uric acid	400	200
	SGPT	205	
	Sodium	200	

an opportunity to the participating organizations to compare activities and modify their own practices, based on what they learn.^{3,4} In a clinical laboratory service, EQAS evaluates the performance of procedures, equipment, materials and personnel and suggests areas for improvement. As a participant of EQAS, we performed all the prescribed tests by strictly following the departmental standard operating procedures and manufacturer's instruction, considering each lot as routine working samples.

CONCLUSION

An EQAS program plays an important role in improving the efficiency of a laboratory service and thereby optimizes the overall quality of a health care system. In the last 4 years, we could significantly improve our laboratory services in terms of performance evaluation, patient care and overall

Month	Outlier	VIS
Jan	Total bilirubin	400
	Creatinine	400
	Uric acid	241
	HDL	400
	SGPT	400
Feb	Uric acid	211
	Total protein	290
	Urea	209
March	Glucose	400
	Sodium	400
	Alkaline phosphatase	391
	SGOT	400
	SGPT	400
April	Creatinine	333
May	Uric acid	346
	SGOT	288
	Sodium	228
	Alkaline phosphatase	268
June	Total bilirubin	213
July	Total bilirubin	383
	Triglyceride	400
	HDL	27
August	Total bilirubin	400
	Triglyceride	325
	Uric acid	298
Sept	Uric acid	400
Oct	Total bilirubin	400
	Calcium	400
	Uric acid	400
	HDL	304
Nov	Glucose	329
	Total bilirubin	400
	Uric acid	400
	Cholesterol	286
	HDL	400
	Sodium	346
Dec	Total bilirubin	310
	Uric acid	400
	HDL	272
	Sodium	268

Tiwari, et al.: The External Quality Assessment Scheme in Biochemistry: Four Years Experience as a Participating Laboratory

lonth	Outlier	VIS
an	Urea	400
	Total bilirubin	400
	Calcium	336
	Uric acid	208
	Triglyceride	212
	HDI	400
Fob	Total protoin	240
50	Coloium	249
arab	Creatining	303
arch		203
		202
	HDL	400
	Potassium	206
pril	Total bilirubin	400
	Calcium	206
	HDL	400
	Sodium	349
	Potassium	256
	Alkaline phosphatase	213
ay	Calcium	379
-	Uric acid	206
	HDL	279
	Sodium	400
	Potassium	400
ino	Clucose	400
June	Urop	400
	Oreatizina	250
	Greatinine	354
	Iotal bilirubin	400
	Iotal protein	276
	Albumin	400
	Calcium	400
	HDL	256
	SGOT	400
	SGPT	400
	Alkaline phosphatase	322
lly	Total bilirubin	326
	HDL	400
	SGPT	217
laust	Glucose	400
aguot	Uric acid	400
	Triglycorido	276
	Codium	270
	Soulull	201
	SGOT	400
	Alkaline phosphatase	400
ept	Giucose	210
	Urea	216
	Albumin	257
	Uric acid	395
	Triglyceride	216
	HDL	368
	SGPT	230
ct	Glucose	200
	Total bilirubin	273
	Total protein	312
	HDI	400
	SGOT	400
	SCOT	400
	JUF I	218
	Aikaline phosphatase	400
OV	Glucose	219
	Urea	387
	Total protein	333
	Albumin	391
	Triglyceride	268
		o - /

Table 5: Contd	
Month	Outlier

Month	Outlier	VIS
Dec	Calcium	284
	Uric acid	400
	HDL	400
	Alkaline phosphatase	381

Table 6: Outliers seen in year 2015

Month	Outlier	VIS
Jan	Urea	222
	Total bilirubin	310
	Albumin	223
	Calcium	213
	Uric acid	400
	SGOT	400
	Alkaline phosphatase	400
Feb	Total bilirubin	400
	Calcium	400
	HDL	350
	Alkaline phosphatase	400
March	Total bilirubin	400
	Calcium	305
	Potassium	268
	Alkaline phosphatase	400
April	Glucose	400
	Urea	400
	Total protein	209
	Albumin	220
	Calcium	400
	Uric acid	400
	Cholesterol	246
	HDL	400
	Alkaline phosphatase	295
May	Glucose	274
	Total bilirubin	400
	Potassium	400
June	Glucose	400
	Urea	400
	Calcium	300
	Uric acid	400
July	Sodium	219
	Potassium	243
August	Glucose	238
	Total bilirubin	400
	Potassium	400
Sept	Total bilirubin	400
	Uric acid	319
	Triglyceride	215
Oct	Glucose	400
	Urea	399
	Creatinine	226
	Sodium	331
	SGOT	400
Nov	Total bilirubin	354
	Calcium	400
	Sodium	328
	Potassium	395
Dec	Creatinine	236
	Total bilirubin	252
	Triglyceride	308
	HDL	211
	Alkaline phosphatase	386

Contd...

quality of laboratory practices.^{5,6} We believe that global participation in such an EQAS program will definitely improve the quality of a hospital service because no health care facility can be totally self-sufficient, and there is always a scope for improvement and development in a system.

REFERENCES

 Tietz NW. Fundamentals of Clinical Chemistry. 3rd ed. Philadelphia, PA: WB Saunders Company; 1987.

- Grant EL, Leavenworth RS. Statistical Quality Control. 6th ed. New York: McGraw-Hill Book Company; 1988.
- Olson JD, Preston FE, Nichols WL. External quality assurance in thrombosis and hemostasis: An international perspective. Semin Thromb Hemost 2007;33:220-5.
- Bejrachandra S, Saipin J, Nathalang O, Siriboonrit U, Rungroung E, Udee S. External quality assessment scheme in red blood cell serology: A 5-year experience in Thailand. Immunohematology 2006;22:1-5.
- Uldall A. Origin of EQA programmers and multidisciplinary cooperation between EQA programme organizers within laboratory medicine. EQA News 1997;8:1-27.
- Westgard JO. Internal quality control: Planning and implementation strategies. Ann Clin Biochem 2003;40:593-611.

How to cite this article: Tiwari E, Mishra S, Singh S, Mishra M. External Quality Assessment Scheme in Biochemistry: Four Years Experience as a Participating Laboratory. Int J Sci Stud 2016;4(4):106-110.

Source of Support: Nil, Conflict of Interest: None declared.