Thyroid Function Abnormalities in Patients with Chronic Kidney Disease - A Prospective Study

Aarathy Kannan¹, V Sriramakrishnan², B Kannan³, Heber Anandan⁴

¹Senior Resident, Department of Medicine, Sundaram Arulrhaj Hospital, Tuticorin, Tamil Nadu, India, ²Associate Professor, Department of Neurology, Thoothukudi Government Medical College and Hospital, Tuticorin, Tamil Nadu, India, ³Senior Assistant Professor, Department of Neurology, Thoothukudi Government Medical College and Hospital, Tuticorin, Tamil Nadu, India, ⁴Senior Clinical Scientist, Department of Clinical Research, Dr. Agarwal's Healthcare Limited, Tirunelveli, Tamil Nadu, India

Abstract

Introduction: The kidney normally plays an important role in the metabolism, degradation, and excretion of several thyroid hormones (THs). It is not surprising therefore that impairment in kidney function leads to disturbed thyroid physiology. All levels of the hypothalamic-pituitary-thyroid axis may be involved, including alterations in hormone production, distribution, and excretion.

Aim: The aim of this study is to study the correlation between TH dysfunction and severity of renal diseases and to differentiate primary thyroid diseases from thyroid dysfunction due to chronic renal failure.

Materials and Methods: Patients with chronic renal failure who are on conservative management were included in the study. Thyroid profile would be done in all patients who fulfill the inclusion criteria.

Results: Excluding patients with hypothyroidism, T_3 level is low in 46% of the patients, and T_4 level is low in 20% of the patients. Excluding 5 hypothyroidism patients who have low T_4 values, 9 (21.33%) other patients had T_4 level below normal and low T_3 syndrome. Number of patients with low T_4 does not correlate with severity of renal disease.

Conclusion: Chronic kidney disease leads to significant changes in the TH levels, which need to be interpreted carefully in these patients.

Key words: Chronic kidney disease, Low T₃ syndrome, Thyroid dysfunction

INTRODUCTION

The function of the thyroid gland is one of the most important in the human body as it regulates majority of the body's physiological actions. The thyroid produces hormones (Γ_3 and Γ_4) that have many actions including metabolism, development, protein synthesis, and the regulation of many other important hormones. Any dysfunction in the thyroid can affect the production of thyroid hormones (Γ Hs) (Γ_3 and Γ_4) which can be linked to various pathologies throughout the body. The interactions between kidney and thyroid functions are known for years. The are necessary for growth and

IJSS www.ijss-sn.com

Access this article online

Month of Submission: 05-2017
Month of Peer Review: 06-2017
Month of Acceptance: 07-2017
Month of Publishing: 07-2017

development of the kidney and for the maintenance of water and electrolyte homeostasis. On the other hand, the kidney is involved in the metabolism and elimination of TH. From a clinical practice viewpoint, it should be mentioned that both hypothyroidism and hyperthyroidism are accompanied by remarkable alterations in the metabolism of water and electrolyte, as well as in cardiovascular function.^{4,5} All these effects generate changes in water and electrolyte kidney management. Moreover, the decline of kidney function is accompanied by changes in the synthesis, secretion, metabolism, and elimination of TH. Thyroid dysfunction acquires special characteristics in those patients with advanced kidney disease. On the other hand, the different treatments used in the management of patients with kidney and thyroid diseases may be accompanied by changes or adverse events that affect thyroid and kidney function, respectively.

Aim

The aim of this study is to study the correlation between TH dysfunction and severity of renal diseases and to

Corresponding Author: V Sriramakrishnan, Department of Neurology, Thoothukudi Government Medical College and Hospital, Tuticorin, Tamil Nadu, India. Phone: +91-9842157565. E-mail: sriramneuro@rediffmail.com

differentiate primary thyroid diseases from thyroid dysfunction due to chronic renal failure.

MATERIALS AND METHODS

This prospective observational study was conducted in the Department of General Medicine, Aarupadai Veedu Medical College Hospital, Puducherry. Patients with chronic renal failure who are on conservative management were included in the study. Inclusion criteria: Symptoms of uremia for 3 months or more, elevated blood urea, serum creatinine, ultrasound evidence of medical renal disease, bilateral contracted kidneys - size < 8 cm in male and size <7 cm in female, poor corticomedullary differentiation, Type 2 or 3 renal parenchymal changes, and supportive laboratory evidence of chronic renal failure such as anemia, urine specific gravity, and changes in serum electrolytes. Exclusion criteria: Patients who underwent peritoneal dialysis or hemodialysis, nephrotic range of proteinuria, low serum protein, especially albumin, history of long time hypothyroidism, other conditions such as acute illness, recent surgery, trauma or burns, and diabetes mellitus. Patients with liver diseases, patients taking drugs altering thyroid profile like amiodarone, steroids, dopamine, phenytoin, estrogen pills, and iodine containing drugs were excluded. Thyroid profile would be done in all patients who fulfill the inclusion criteria. Informed consent was obtained from all patients. Detailed clinical history and clinical examination were undertaken with preference to thyroid and renal diseases. The following investigations were performed urine for specific gravity and broadcast, peripheral smear for anemia and burr cells, renal parameters such as blood urea, serum creatinine, and creatinine clearance (using Cockcroft-Gault formula), serum calcium and phosphorus, 24 h urine protein, and serum protein to rule out nephrotic syndrome and hypoproteinemia, respectively.

RESULTS

50 patients with chronic renal failure who were on conservative management were studied. Among 50 patients, 10 patients were female and 40 patients were male. The age varied from 12 to 70 years. Among 50 patients, 10 patients were 30 years and below, 33 patients were in the age group of 30-60 years, and 7 patients above 60 years. The duration of chronic renal failure in this study varied from 3 months to 5 years. The creatinine clearance varied from 6 to 34 ml/min. 20 patients had glomerular filtration rate (GFR) 10 ml/min accounting for 40%, 20 patients had GFR 11-20 ml/min accounting for another 40%, and remaining 10 patients had GFR more than 20 ml/min (accounting for 20%) (Table 1). Blood urea varied

from 64 to 170 mg/dl and serum creatinine varied from 3 to 17.2 mg/dl. 24 h urinary protein excretion was <1 g/day in all the patients in this study group. Serum calcium and phosphorous were normal in all the patients. 80% of the patients had anemia with peripheral smear revealing normocytic normochromic anemia in 72% and hypochromic anemia in 8% of the patients. T₃ level in this study varied from 0.2 to 2 ng/ml. The mean value of T₃ is 0.67 ng/ml (Table 2). Age comparison of low T₃ syndrome in Table 3 shows about 30% of chronic renal failure patients below 30 years of age have low T₃ syndrome. The percentage increases to 51.51% in the age group 31-60 years. This is probably due to increased chronic renal failure patients in this age group. In age above 60 years, 42.85% have low T₃ syndrome. Sex incidence in this study, 50% of males have low T₃ syndrome, and only 30% of the females have low T₄ syndrome (Table 4).

Ultrasound study of the abdomen showed evidence of

Table 1: Distribution of level of GFR in CRF patients

GFR	Patients (%)
<10 ml/min	20 (40)
11-20 ml/min	20 (40)
>20 ml	10 (20)

GFR: Glomerular filtration rate, CRF: Chronic renal failure

Table 2: Serum concentration of TH in CRF patients studied

THs	Normal range Study ran		ge Mean±SD	
Serum T ₃ ng/ml	0.6-2.1	0.2-2	0.673±0.414	
Serum T₄ µg/dl	5-13	0.5-9.5	5.622±2.27	
Serum TSH µIU/ml	0.4-7	0.6-27	6.53±6.98	

TSH: Thyroid-stimulating hormone, TH: Thyroid hormones, SD: Standrad deviation

Table 3: Distribution of low T_3 and T_4 among various levels of TSH in the study group of CRF patients

TSH level µIU/mI	Patients with low T ₃ (%)	Patients with low T ₄ (%)	
≤7	16 (57.14)	8 (53.33)	
7.1-20	7 (25)	2 (13.33)	
>20	5 (17.85)	5 (33.33)	

TSH: Thyroid-stimulating hormone, CRF: Chronic renal failure

Table 4: Analysis of thyroid dysfunction in this study

Thyroid dysfunction	Patients (%)
Low T ₃ syndrome	23 (46)
Low T ₄ syndrome	10 (20)
Hypothyroidism	5 (10)

chronic renal failure in all patients. Contracted kidney was present in 90% of the patients. Remaining patients had poor corticomedullary differentiation. Among these 28 patients, 5 patients had low serum T_3 and T_4 and high thyroid-stimulating hormone (TSH) values more than 20 μ IU/ml. They also had symptoms of hypothyroidism. These patients as per the criteria were grouped under "primary hypothyroidism." Only 6 patients had slightly elevated TSH ranging between 9 and 14 μ IU/ml. In this group, only 3 patients had low T_3 level, among which only one patient had few clinical features of hypothyroidism. Hence, these 6 patients did not satisfy the criteria for hypothyroidism fully. Hence, all 23 patients were grouped under "low T_3 syndrome" or "sick euthyroid syndrome" (Table 5).

Dry, flaky skin was present in 15 patients, of whom only 4 patients were hypothyroid. Sinus bradycardia was present in 7 patients.

Hypothyroidism did not show any linear correlation with GFR. Increased number of hypothyroid patients of about 2 in number was present in GFR 11-20 ml/min, whereas only 3 patients had hypothyroidism in GFR <10 ml/min.

Excluding 5 hypothyroidism patients who have low T_4 values, 9 (21.33%) other patients had T4 level below normal and low T_3 syndrome. Number of patients with low T4 does not correlate with severity of renal disease (Table 6). The mean value of T4 excluding hypothyroidism patients was normal at all the stages of renal failure (Table 7). None of the patients had T4 value above normal level.

Excluding the patients with primary hypothyroidism, the mean value is 0.71 ng/ml. This value was in low normal limit. Excluding hypothyroidism, T_3 levels were studied in relation to GFR. It was found that mean value of serum T_3 is low (0.538 ng/ml) only in patients with GFR <10 ml/min (Table 8). The mean value is low normal in patients with GFR more than 10 ml/min. According to the study, number of patients with low T_3 independently increases with increase in severity of the renal failure irrespective of low T_3 levels.

Serum T_4 level in the study varies from 0.5 to 9.5 µg/dl. Mean value of serum T_4 among 50 patients 5.62 µg/dl, excluding hypothyroid patients, the mean value is 5.99 µg/dl. This value is within low normal level of T_4 .

Values of TSH vary from 0.6 to 27 μ IU/ml with mean value in 6.53 μ IU/ml. Excluding hypothyroidism, mean value is 4.75 μ IU/ml. This shows normal serum level of TSH. Among the 50 patients, TSH was normal in 38 patients (76%) and values between 7.1 and 20 μ IU/ml

in 7 patients (14%). It was elevated more than 20 µIU/ml in 5 patients (10%). According to our study, in patients with low T₃ syndrome, the mean values of TSH in various stages of renal failure are within normal range. However, the values of TSH did not show any linear correlation with GFR.

DISCUSSION

Thyroid dysfunction in chronic renal failure was extensively studied by Ramirez et al.7 Apart from his study, various studies conducted in this line have showed different results. In this study, patients only on conservative management were studied. This is because thyroid profile undergoes changes due to dialysis independent of that due to chronic renal failure. Dialysis also changes the previous serum status of TH in the patients with renal failure. Many studies have been conducted by comparing chronic renal failure patients on conservative management and hemodialysis by Ramirez et al.7 and Kayima et al.8 Many studies conducted in chronic renal failure patients showed low T₂ values. Low T₃ had been reported in Ramirez et al., Hegedüs et al., 1 and Beckett et al.10 studies, that too in cases of severe renal failure. Ramirez et al.7 study showed a linear correlation between the mean serum T₃ and T₄ and severity of renal failure. As with other studies, mean T₃ level in our study

Table 5: Analyses of serum T_3 , T_4 , and TSH excluding hypothyroidism

Thyroid dysfunction	Patients with normal values (%)	Patient with low values (%)	Patients with high values (%)	
T_3	22 (44)	23 (26)	Nil	
T ₄	35 (70)	10 (20)	Nil	
TŠH	38 (76)	Nil	7 (14)	

TSH: Thyroid-stimulating hormone

Table 6: Distribution of low T_3 and T_4 syndrome with relation to the creatinine clearance

Creatinine clearance ml/min	Low T ₃ syndrome	Low T ₄ syndrome	
≤10	13 (65)	6 (30)	
11-20	7 (35)	3 (15)	
>20	3 (30)	1 (10)	

Table 7: Distribution of thyroid dysfunction in this study among various creatinine clearance levels

Creatinine clearance ml/min	Patients (%)	Low T ₃ syndrome (%)	Hypothyroidism (%)
≤10	20 (40)	13 (65)	3 (15)
11-20	20 (40)	7 (35)	2 (10)
>20	10 (20)	3 (30)	Nil

Table 8: Correlations of THs with severity of renal failure excluding hypothyroidism

Creatinine clearance ml/min	Mean Τ ₃ μg/dl	Standard deviation	Mean T₄µg/dl	Standard deviation	Mean TSH μIU/mI	Standard deviation
≤ 10 (<i>n</i> =17)	0.538	0.40	5.02	2.10	5.22	4.25
11-20 (<i>n</i> =18)	0.82	0.43	6.69	2.17	3.77	3.78
>20	8.0	0.31	6.32	2.04	5.72	5.00

TH: Thyroid hormones

was reduced below normal in GFR < 10 ml/min. In higher GFR, it was present in low normal T₃ level and there was no linear correlation between T3 level and GRF which is consistent with Avasthi et al. study. 11 Mean T4 level in this study is within normal limits in all levels of GFR, but it is in low normal level and also it does not correlate with the severity of renal failure. In this study, not all the patients with chronic renal failure have low T_3 and T_4 . It is estimated that only 58% (29 patients) of patients have thyroid profile abnormality. Remaining 42% of patients have normal thyroid profile. Among 58% of these patients, excluding primary hypothyroid patients 28% have only low T₃ level with normal T₄ level. Remaining 20% have both low T₃ and T₄ level. The percentage of patients having low T₃ and T₄ gradually increases, with decrease in GFR. The patient who will develop such change in thyroid profile is not known. Excluding hypothyroidism, mean TSH level in our study is within normal limits. The mean TSH levels are also within normal limits for the various ranges of GFR. However, TSH level does not show any linear correlation with the severity of renal failure. This is consistent with the study conducted by Spector et al.12 and Ramirez et al.7 These studies demonstrated abnormality in hypophyseal mechanism of TSH release in uremic patients as the TSH response to the thyrotropin-releasing hormone (TRH) was blunted. Other studies conducted by Joseph et al. 13 and Hardy et al.14 revealed low T₃, T₄ level with high TSH level suggesting maintenance of pituitary-thyroid axis. In this study, excluding those with hypothyroidism, 7 patients had mild elevation of TSH with low T₃ level. Among these patients, T_4 is within normal limits in 4 of the patients. In the remaining 3 patients, T₄ is below normal. There were no clinical features suggestive of hypothyroidism in these patients. Investigations such as FT₄, FT₃, TRH response, and antithyroid autoantibodies can be done to diagnose hypothyroidism in these patients. Out study is consistent with the results of Ramirez et al.7 study showing low T₃, low T₄, and normal or mild elevation of TSH. Yet, it is unclear that to what extent these changes are responsible for the manifestations of uremic syndrome. From the various studies, it has been suggested that this thyroid profile derangements are a part of body adaptation mechanism. As stated previously, hemodialysis and continuous ambulatory peritoneal dialysis have shown to affect the thyroid profile independently of chronic

renal failure. Furthermore, drugs like heparin, furosemide used during dialysis will affect the thyroid profile. Kayima et al.8 and Gomez-Pan A et al.15 have conducted studies regarding the effect of dialysis on chronic renal failure patients with thyroid dysfunction. These studies showed no significant improvement in thyroid profile after repeated hemodialysis. However, in the patients who have undergone renal transplant surgery, most of the thyroid function parameters returned to normal with TSH below normal. Previous studies by Quion-Verde¹⁶ reported a high prevalence of hypothyroidism in chronic renal failure. It was estimated to be about 5% in patients with terminal renal failure. Detail study by Kaptein et al.^{5,17} estimated the prevalence of primary hypothyroidism was about 2.5 times much frequent in chronic renal failure and dialysis. The hypothyroidism in chronic renal failure was estimated to range between 0 and 9.5%. Kaptein et al.5 study also estimated the presence of antithyroid antibody titer in 6.7% of chronic renal failure. In our study, the hypothyroidism is present in 10% of the patients but does not correlate with the severity of the renal failure. The symptoms of hypothyroidism were distributed equally in both hypothyroid and chronic renal failure patients in our study. Signs of hypothyroidism were more common in chronic renal failure without hypothyroidism than with hypothyroidism. Hence, diagnosis of hypothyroidism in chronic renal failure mainly rest on TSH level which should be very high (>20 MIU/dl) with low serum T₄. In this study, no patient had clinical or biochemical features of hyperthyroidism.

CONCLUSION

TH dysfunction occurs in 58% of the chronic renal failure patients. Incidence of hypothyroidism is increased in patients with chronic renal failure. Both clinical and biochemical parameters are essential to diagnose hypothyroidism in patients with chronic renal failure. Excluding patients with hypothyroidism, T_3 level is low in 46% of the patients and T_4 level is low in 20% of the patients. Number of patients with low T_3 and T_4 syndrome progressively increases with severity of renal failure. Serum level of T_3 and T_4 has no correlation with the severity of renal failure. Alteration in the values of T_3 and T_4 occurs as a part of body's adaptation mechanism to conserve energy.

REFERENCES

- Jameson JL, Weetman AP. Disorders of the thyroid gland. Harrison's Principles of Internal Medicine. 18th ed. New York, NY: McGraw-Hill; 2014
- Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab 2012;16:204-13.
- Feinstein EI, Kaptein EM, Nicoloff JT, Massry SG. Thyroid function in patients with nephrotic syndrome and normal renal function. Am J Nephrol 1982:2:70-6.
- Kaptein EM, Quion-Verde H, Massry SG. Hemodynamic effects of thyroid hormone. Contrib Nephrol 1984;41:151-9.
- Kaptein EM. Thyroid function in renal failure. Contrib Nephrol 1986;50:64-72.
- Kaptein EM, Feinstein EI, Massry SG. Thyroid hormone metabolism in renal diseases. Contrib Nephrol 1982;33:122-35.
- Ramirez G, O'Neill W Jr, Jubiz W, Bloomer HA. Thyroid dysfunction in uremia: Evidence for thyroid and hypophyseal abnormalities. Ann Intern Med 1976;84:672-6.
- Kayima JK, Otieno LS, Gitau W, Mwai S. Thyroid hormones profile in patients with chronic renal failure on conservative management and regular hemodialysis. East Afr Med J 1992;69:333-6.
- Hegedüs L, Andersen JR, Poulsen LR, Perrild H, Holm B, Gundtoft E, et al.
 Thyroid gland volume and serum concentrations of thyroid hormones in

- chronic renal failure. Nephron 1985;40:171-4.
- Beckett GJ, Henderson CJ, Elwes R, Seth J, Lambie AT. Thyroid status in patients with chronic renal failure. Clin Nephrol 1983;19:172-8.
- Avasthi G, Malhotra S, Narang AP, Sengupta S. Study of thyroid function in patients of chronic renal failure. Indian J Nephrol 2001;11:165-9.
- Spector DA, Davis PJ, Helderman JH, Bell B, Utiger RD. Thyroid function and metabolic state in chronic renal failure. Ann Intern Med 1976;85:724-30.
- Joseph LJ, Desai KB, Mehta HJ, Mehta MN, Almeida AF, Acharya VN, et al. Measurement of serum thyrotropin levels using sensitive immunoradiometricassays in patients with chronic renal failure: Alterations suggesting an intact pituitary thyroid axis. Thyroidology 1993;5:35-9.
- Hardy MJ, Ragbeer SS, Nascimento L. Pituitary-thyroid function in chronic renal failure assessed by a highly sensitive thyrotropin assay. J Clin Endocrinol Metab 1988;66:233-6.
- Gomez-Pan A, Alvarez-Ude F, Yeo PP, Hall R, Evered DC, Kerr DN. Function of the hypothalamo-hypophysial-thyroid axis in chronic renal failure. Clin Endocrinol (Oxf) 1979;11:567-74.
- Quion-Verde H. Prevalence of thyroid disease in chronic kidney failure and dialysis patients. No. 120. IXth International Conference on Nephrology; 1984
- Kaptein EM, Quion-Verde H, Chooljian CJ, Tang WW, Friedman PE, Rodriquez HJ, et al. The thyroid in end-stage renal disease. Medicine (Baltimore) 1988;67:187-97.

How to cite this article: Kannan A, Sriramakrishnan V, Kannan B, Anandan H. Thyroid Function Abnormalities in Patients with Chronic Kidney Disease - A Prospective Study. Int J Sci Stud 2017;5(4):68-72.

Source of Support: Nil, Conflict of Interest: None declared.