On Hochschild Cohomology of Generalized Matrix Algebras

S. N. Salehi Oroozaki, Feysal Hassani
Department of Mathematics, Payame Noor University,Tehran, Iran

Abstract

Let $S=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ be an algebraover an arbitrary commutative ring, where A and B are two R-algebras with units 1_{A} and 1_{B}, respectively, M is a left A-module and right B-module $((A-B)$-module), N is a left B-module and right A-module (($B-A)$-module).

 We call this algebra, generalized matrix algebra. For$$
X_{n}^{A}=A^{n+1} \otimes_{R}(A \oplus M), \quad X_{n}^{B}=(B \oplus M) \otimes_{R} B^{n+1}
$$

and

$$
Y_{n}^{A}=(N \oplus A) \otimes_{R} A^{n+1}, \quad Y_{n}^{B}=B^{n+1} \otimes_{R}(n \oplus B)
$$

we show that the complex $M \otimes_{B} N \stackrel{\mu}{\leftarrow} \frac{X_{1}}{X_{1}^{A} \oplus Y_{1}^{A} \oplus X_{1}^{B} \oplus Y_{1}^{B}} \stackrel{b_{2}^{\prime}}{\leftarrow} \frac{X_{2}}{X_{2}^{A} \oplus Y_{2}^{A} \oplus X_{2}^{B} \oplus Y_{2}^{B}} \stackrel{b_{3}^{\prime}}{\leftarrow} \ldots$ is a relative projective resolution of $M \otimes_{B} N$ as an S-module. For an S-module X, we prove that üüön ${ }_{A^{e}}\left(\left(A^{*+2} b_{*}^{\prime}\right) X_{A A}\right) \cong \quad o m_{s^{e}}\left(\left(X_{*}^{A} \oplus Y_{*}^{A} b_{*}^{\prime}\right) X\right)$ and üü̈̈̈n ${B^{e}}\left(\left(B^{*+2} b_{*}\right) X_{B B}\right) \cong \operatorname{om}_{S^{e}}\left(\left(X_{*}^{B} \oplus Y_{*}^{B} b_{*}^{\prime}\right) X\right) \quad$ where A^{e} is the enveloping algebra of A and $X_{A A}=1_{A} X 1_{A^{\prime}}$, $X_{A B}=1_{A} X 1_{B}, X_{B A}=1_{B} X 1_{A}$ and $X_{B B}=1_{B} X 1_{B}$. Moreover, the existence of two long exact sequences of R-modules relating the Hochschild cohomology of A, B, M, N and Sare considered and investigated.

Key words: Algebra, Generalized matrix algebra, Hochschild cohomology, A projective resolution

INTRODUCTION

Let R be an arbitrary commutative ring with unit, let A and B be two R-algebras with unit, let M be a left A-module and right B-module ($(A-B)$-module), N be a left B-module and right A-module ($(B-A)$-module) and consider $S=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ as an algebra over R with the following operations:

Access this article online				
Month of Submission : 05-2017				
UNS.	Month of Peer Review : 06-2017			
www.ijss-sn.com			\quad	Month of Acceptance : 07-2017
:---	:---			
Month of Publishing : 07-2017				

$$
\left[\begin{array}{cc}
a_{1} & m_{1} \\
n_{1} & b_{1}
\end{array}\right]+\left[\begin{array}{cc}
a_{2} & m_{2} \\
n_{2} & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}+a_{2} & m_{1}+m_{2} \\
n_{1}+n_{2} & b_{1}+b_{2}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
a_{1} & m_{1} \\
n_{1} & b_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{2} & m_{2} \\
n_{2} & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} a_{2}+m_{1} \otimes_{B} n_{2} & a_{1} m_{2}+m_{1} b_{2} \\
n_{1} a_{2}+b_{1} n_{2} & n_{1} \otimes_{A} m_{2}+b_{1} b_{2}
\end{array}\right]
$$

where $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B, m_{1}, m_{2} \in M, n_{1}, n_{2} \in N$. This algebra is called generalized matrix algebra. In this paper, we suppose that $A-B$-module M and $B-A$-module N are R -modules.

Also, in S if $N=0$ then S is called triangular algebra, and this algebra studied by Cheung [3, 4], and other researchers in $[5,6,7]$.

[^0]Let 1_{A} and 1_{B} denote the unit elements of A and B. Let X be an A and B two sided module, we write $X_{A A}=1_{A} X 1_{A}$, $X_{A B}=1_{A} X 1_{B}, X_{B A}=1_{B} X 1_{A}$ and $X_{B B}=1_{B} X 1_{B}[11]$.

Suppose that A is an algebra and X is an A-module (i.e. X is a two sided A-module). Let $C^{n}(A, X)$ be the space of all n-linear (as a A-module map) mappings from $A \times \ldots \times A(n$ times) into X and $C^{0}(A, X)=X$, for $n=0,1,2, \ldots$.

Consider the sequance

$$
0 \rightarrow C^{0}(A, X) \xrightarrow{d^{0}} C^{1}(A, X) \xrightarrow[\rightarrow]{d^{1}} \xrightarrow[\rightarrow]{d^{n}} C^{n+1}(A, X) \rightarrow \ldots(\tilde{C}(A, X))
$$

in which

$$
\begin{align*}
& d^{p} x(a)=a x-x a \tag{1}\\
& \begin{array}{r}
d^{h} f\left(\mathrm{a}_{1}, a_{2}, \ldots, a_{n+1}\right)=\mathrm{a}_{1} f\left(a_{2}, \ldots, a_{\mathrm{n}+1}\right) \\
\\
+(-1)^{\mathrm{n}+1} f\left(\mathrm{a}_{1}, \ldots, a_{n}, a_{\mathrm{n}+1}\right)
\end{array} \\
& +\sum_{j=1}^{n}(-1)^{j} f\left(a_{1}, \ldots, a_{j-1}, a_{j} a_{j+1}, \ldots, a_{n+1}\right)
\end{align*}
$$

where $n \geq 1, x \in X$ and $a_{1}, \ldots, a_{\mathrm{n}+1} \in A$. The above sequence is a complex for A and X. The n-th cohomology group of \backslash tilde $\widetilde{C}(A, X)$ is said to be n-th Hochschild cohomology group and denoted by $H^{n}(A, X)$. Actually, $H^{\mathrm{n}}(A, X)=$ $\mathrm{Z}^{n}(A, X) / B^{n}(A, X)$ where $Z^{n}(A, X)=\operatorname{Ker} d^{n}$ and $B^{\mathrm{n}}(A, X)$ $=\mathrm{I} m d^{n-1}$, for more details $[1,10]$.

For a given R -algebra Λ we will denote by Λ^{e} the enveloping algebra of Λ, that is $\Lambda e=\Lambda \otimes_{R} \Lambda^{o p}$, ($\Lambda^{o p}$ means opposite ring Λ), and for $\Lambda \in \Lambda, \Lambda^{0}$ will be Λ considered as an element in $\Lambda^{o p}$.

One method for defining the Hochschild cohomology groups of A is to consider the enveloping algebra A^{e} of A. For any A-module X we can see it as a left A^{e}-module by the action $\left(a \otimes b^{0}\right) x=a x b$ for every $a, b \in A$, and $x \in X$. Clearly, A is a left A^{e}-module.
Now, it is easy to verify that the mapping $M \rightarrow\left(\begin{array}{cc}0 & M \\ 0 & 0\end{array}\right)$ which maps m into $\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right)$ is a $S, S^{e}, S \otimes_{R} B^{o p}, B \otimes_{R} A^{o p_{-}}$ isomorphism. If e is an idempotent element $\left(\begin{array}{cc}1_{A} & 0 \\ 0 & 0\end{array}\right)$ of S then we denote by P_{e} the indecomposable projective S-module S_{e}. Similarly the S^{e}-module P_{e} may be regarded as a $S \otimes A^{o p}$-module via π, since $P_{e}(\operatorname{Ker} \pi)=0$, and finally, the morphism π makes A a S^{e}-module.

According to the above, the canonical sequence

[^1]In addition, the mapping $\operatorname{Hom}_{\mathrm{A}}^{\text {op }}(A, X) \rightarrow X$ which sends any $A^{\text {op}}$-morphism $f: \mathrm{R} \rightarrow X$ into the element $f\left(1_{A}\right)$ of X is a S^{e}-isomorphism. Using now the fact that the canonical sequence
$0 \rightarrow P_{e} \rightarrow S \rightarrow B \rightarrow 0$
is S^{e}-exact we obtain the following.
Theorem 1.1 Let $S=\left[\begin{array}{cc}A & M \\ N & B\end{array}\right]$. Then
$\operatorname{Hom}_{\mathrm{s}} \mathrm{e}(S, B) \cong \operatorname{Hom}_{\mathrm{s}} \mathrm{e}(B, B) \cong \operatorname{Hom}_{\mathrm{B}} \mathrm{e}(B, B)=\mathrm{H}^{0}(B, B)$.
Proof. The sequence (3) implies the long exact sequence
$0 \rightarrow \operatorname{Hom}_{s^{e}}(B, B) \rightarrow \operatorname{Hom}_{s^{e}}(S, B) \rightarrow \operatorname{Hom}_{s^{e}}(P, B)$
$\rightarrow \operatorname{Ext}_{s}^{1}(B, B) \rightarrow \operatorname{Ext}_{s}^{1}(S, B) \rightarrow \operatorname{Ext}_{s}^{1}(P, B) \rightarrow \ldots$
It follows from the structure of S^{e}-module of B that $\operatorname{Hom}_{\mathrm{s}} \mathrm{e}(B, B) \cong \operatorname{Hom}_{\mathrm{B}} \mathrm{e}(B, B)={ }^{H 0}(A, A)$.

MAIN RESULTS

Throughout this section, R, A, B, M and N are the defined ring, algebras and modules that are defined in the previous section. Smilar to [7], we denote the canonical resolution of S by $\left(S^{*+2}, b_{*}^{\prime}\right)$ and assume that $\left(X_{*}, b_{*}^{\prime}\right)$ is a S-module subcomplex of $\left(S^{*+2}, b_{*}^{\prime}\right)$, defined by
$X_{n}=A^{n+2} \oplus B^{n+2} \oplus \bigoplus_{i=0}^{n+1} A^{i} \otimes_{R} M \otimes_{R} B^{n+1-i} \oplus \bigoplus_{i=0}^{n+1} B^{i} \otimes_{R}$
$N \otimes_{R} A^{n+1-i}$.
By a simple calculation one can show that $\left(S^{*+2}, b_{*}^{\prime}\right)$ is a direct summand of $\left(S^{*+2}, b_{*}^{\prime}\right)$ as an S-module complex. Hence, $\left(X_{*}, b_{*}^{\prime}\right)$ is a projective resolution of the S^{e}-module S, relative to the family of the S^{e}-linear epimorphisms which split as R-linear morphisms.

Now, let $\left(X_{*}^{A}, b_{*}^{\prime}\right),\left(X_{*}^{B}, b_{*}^{\prime}\right),\left(Y_{*}^{A}, b_{*}^{\prime}\right)$ and $\left(Y_{*}^{B}, b_{*}^{\prime}\right)$ be the subcomplexes of $\left(X_{*}, b_{*}^{\prime}\right)$, defined by

$$
X_{n}^{A} \ddot{u ̈ u ̈ a^{n+1}} \otimes_{R} \quad A \oplus M \quad X_{n}^{B} \quad B \oplus M \otimes_{R} B^{n+1}
$$

and

$$
Y_{n}^{A}=(N \oplus A) \otimes_{R} A^{n+1}, \quad Y_{n}^{B}=B^{n+1} \otimes_{R}(n \oplus B)
$$

Then projective resolutions of the S^{e}-modules $1_{A} S, S 1_{B}$, $S 1_{A}$ and $1_{B} S$ are $\left(X_{*}^{A}, b_{*}^{\prime}\right),\left(X_{*}^{B}, b_{*}^{\prime}\right),\left(Y_{*}^{A}, b_{*}^{\prime}\right)$ and $\left(Y_{*}^{B}, b_{*}^{\prime}\right)$,
respectively. The proof of the following Lemma is clear and we omit it.

Lemma 2.1 Let X_{i}^{\prime} s be as above for $n \geq 1$ and let
$\mu: \frac{X_{1}}{X_{1}^{A} \oplus Y_{1}^{A} \oplus X_{1}^{B} \oplus Y_{1}^{B}} \rightarrow M \otimes_{B} N$ be an R -map defined by
$\mu\left((a \otimes m \otimes b) \oplus\left(b^{\prime} \otimes n \otimes a^{\prime}\right)\right)=a a^{\prime}(m \otimes n) b b^{\prime}$,
for $a, a^{\prime} \in A, b, b^{\prime} \in B, m \in M$ and $n \in N$. The complex

$$
\begin{gather*}
M \otimes_{B} N \stackrel{\mu}{\leftarrow} \frac{X_{1}}{X_{1}^{A} \oplus Y_{1}^{A} \oplus X_{1}^{B} \oplus Y_{1}^{B}} \stackrel{b_{2}^{\prime}}{\leftarrow} \\
\frac{X_{2}}{X_{2}^{A} \oplus Y_{2}^{A} \oplus X_{2}^{B} \oplus Y_{2}^{B}} \stackrel{b_{3}^{\prime}}{\leftarrow} \ldots \tag{4}
\end{gather*}
$$

is a relative projective resolution of $M \otimes_{B} N$ as an S-module. A contracting homotopy of (4) as a complex of R-modules is the family

$$
\begin{equation*}
\sigma_{1}: M \otimes_{B} N \rightarrow \frac{X_{1}}{X_{1}^{A} \oplus Y_{1}^{A} \oplus X_{1}^{B} \oplus Y_{1}^{B}} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& \sigma_{n+1}: \frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A} \oplus X_{n}^{B} \oplus Y_{n}^{B}} \rightarrow \\
& \frac{X_{n+1}}{X_{n+1}^{A} \oplus Y_{n+1}^{A} \oplus X_{n+1}^{B} \oplus Y_{n+1}^{B}}(n \geq 1) \tag{6}
\end{align*}
$$

defined by
$\sigma_{1}(m \otimes n)=1_{A} \otimes m \otimes 1_{B}+1_{B} \otimes n \otimes 1_{A}$
$\sigma_{n+1}\left(\mathrm{a}_{0} \otimes m \otimes b_{2, \mathrm{n}+1}+\mathrm{b}_{0} \otimes n \otimes a_{2, \mathrm{n}+1}\right)=1_{A} \otimes \mathrm{a}_{0} \otimes m \otimes$
$b_{2, n+1}$
$+(-1)^{\mathrm{n}} 1_{A} \otimes a_{0} m \otimes b_{2, n+1} \otimes 1_{B}+(-1) n 1_{B} \otimes b_{0} n \otimes a_{2, n+1} \otimes 1_{A}$
$\sigma_{n+1}\left(a_{0, i} \otimes m \otimes b_{i+2, n+1}\right)=1_{A} \otimes a_{0, i} \otimes m \otimes b_{i+2, n+1}$
$+1_{B} \otimes b_{0, i} \otimes n \otimes a_{i+2, n+1} \quad$ for $i>0$,
where $a_{0, i}=a_{0} \otimes \ldots \otimes a_{i}$ and $b_{i+2, n+1}=b_{i+2} \otimes \ldots \otimes b_{n+i}$.
Let X be an A-module, then for every $f \in \operatorname{Hom}_{A^{A}}\left(A^{n+2}, X\right)$,
$f\left(a_{0} \otimes \ldots \otimes a_{n+1}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) f\left(a_{0} \otimes \ldots \otimes a_{n+1}\right)$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in X_{A A}$.
for every $a_{i} \in A$ and $n_{0} \leq n \leq n+1$. Similar to (7) we have for every $f \in \operatorname{Hom}_{B^{e}}\left(\mathrm{~B}^{\mathrm{n+2}}, X\right)$. As a generalization of Lemma 4 of [7], we have the following result:

Lemma 2.2 Let X be an S-module, then

$$
\begin{equation*}
\operatorname{Hom}_{A^{e}}\left(\left(A^{*+2}, b_{*}^{\prime}\right), X_{A A}\right) \cong \operatorname{Hom}_{S^{e}}\left(\left(X_{*}^{A} \oplus Y_{*}^{A}, b_{*}^{\prime}\right), X\right), \tag{8}
\end{equation*}
$$

and
$\operatorname{Hom}_{B^{e}}\left(\left(B^{*+2}, b_{*}\right), X_{B B}\right) \cong \operatorname{Hom}_{s^{e}}\left(\left(X_{*}^{B} \oplus Y_{*}^{B}, b_{*}^{\prime}\right), X\right)$,

Proof. In light of (7), the canonical inclusion $i_{n} \cdot \operatorname{Hom}_{A_{1}}\left(A^{n+2}, X^{A}\right)$ $\rightarrow \operatorname{Hom}_{A}{ }^{e}\left(A^{n+2}, X\right)$ is an isomorphism. Let $\theta_{n}^{A}: \operatorname{Hom}_{A^{e}}\left(A^{n+2}, X\right) \rightarrow \operatorname{Hom}_{S^{e}}\left(A_{n}^{A} \oplus Y_{n}^{A}, X\right)$ be an R-map defined by

- $\theta_{n}^{A}(f)\left(a_{0} \otimes \ldots \otimes a_{n+1}\right)=f\left(a_{0} \otimes \ldots \otimes a_{n+1}\right)$,
- $\theta_{n}^{A}(f)\left(a_{0} \otimes \ldots \otimes a_{n} \otimes m\right)=f\left(a_{0} \otimes \ldots \otimes a_{n} \otimes 1_{A}\right)\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right)$,
- $\theta_{n}^{A}(f)\left(t \otimes a_{0} \otimes \ldots \otimes a_{n}\right)=\left(\begin{array}{ll}0 & 0 \\ t & 0\end{array}\right) f\left(1_{A} \otimes a_{0} \otimes \ldots \otimes a_{n}\right)$,
for every $a_{i} \in A, m \in M, t \in N$. Let $v_{n}^{A}: \operatorname{Hom}_{\mathrm{s}} \mathrm{e}^{(}\left(X_{n}^{A} \oplus Y_{n}^{A}, X\right)$ $\rightarrow \operatorname{Hom}_{\mathrm{A}} \mathrm{e}\left(A^{n+2}, X\right)$ be anR-map defined by restriction. Clearly, $v_{n}^{A} \circ \theta_{n}^{A}=i d$. Therefore, we shall show that $\theta_{n}^{A} \circ v_{n}^{A}$ $=i d$. Let $\varphi \in \operatorname{Hom}_{s^{e}}\left(X_{n}^{A} \oplus Y_{n}^{A}, X\right)$. Clearly,
$\theta_{n}^{A} \circ v_{n}^{A}(\phi)\left(a_{0} \otimes \ldots \otimes a_{n+1}\right)=\phi\left(a_{0} \otimes \ldots \otimes a_{n+1}\right)$
for all $a_{0}, \ldots, a_{n+1} \in A$. Then
$\phi\left(a_{0} \otimes \ldots \otimes a_{n} \otimes m\right)=\phi\left(a_{0} \otimes \ldots \otimes a_{n} \otimes 1_{A}\right)\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right)$
$=\theta_{n}^{A}\left(v_{n}^{A}(\phi)\right)\left(a_{0} \otimes \ldots \otimes a_{n} \otimes 1_{A}\right)\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right)$
$=\theta_{n}^{A}\left(v_{n}^{A}(\phi)\right)\left(a_{0} \otimes \ldots \otimes a_{n} \otimes m\right)$,
and
$\phi\left(n \otimes a_{0} \otimes \ldots \otimes a_{n}\right)=\left(\begin{array}{ll}0 & 0 \\ n & 0\end{array}\right) \phi\left(1_{A} \otimes a_{0} \otimes \ldots \otimes a_{n}\right)$
$=\left(\begin{array}{ll}0 & 0 \\ n & 0\end{array}\right) \theta_{n}^{A}\left(v_{n}^{A}(\phi)\right)\left(1_{A} \otimes a_{0} \otimes \ldots \otimes a_{n}\right)$
$=\theta_{n}^{A}\left(v_{n}^{A}(\phi)\right)\left(n \otimes a_{0} \otimes \ldots \otimes a_{n}\right)$,
for all $a_{0}, \ldots, a_{n} \in A, m \in M$ and $n \in N$. Hence, $\theta_{n}^{A} \circ v_{n}^{A}(\phi)=\phi$. Since the family $\theta_{*} \circ v_{*}$ is an R-map of complexes, (8) holds. The proof of (9) is similar.

Let X be an A and B-module, then for every $f \in \operatorname{Hom}_{S^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A} \oplus X_{n}^{B} \oplus Y_{n}^{B}}, X\right)$, we have
$f\left(x_{0} \otimes \ldots \otimes x_{n+1}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) f\left(x_{0} \otimes \ldots \otimes x_{n+1}\right)$
$\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in X_{A B}$.
Lemma 2.3 Let X be a S-module, then
$\operatorname{Hom}_{A \otimes_{R} B^{o p}}\left(\left(\frac{X_{*}}{X_{*}^{A} \oplus Y_{*}^{A} \oplus X_{*}^{B} \oplus Y_{*}^{B} \oplus}, b_{*}^{\prime}\right), X_{A B}\right) \cong$

$$
\operatorname{Hom}_{s^{e}}\left(\left(\frac{X_{*}}{X_{*}^{A} \oplus Y_{*}^{A} \oplus X_{*}^{B} \oplus Y_{*}^{B} \oplus}, b_{*}^{\prime}\right), X\right) .
$$

Proof. The relation (10) implies that the canonical inclusion
$\operatorname{Hom}_{S^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A} \oplus X_{n}^{B} \oplus Y_{n}^{B}}, X_{A B}\right) \rightarrow$
$\operatorname{Hom}_{s^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A} \oplus X_{n}^{B} \oplus Y_{n}^{B}}, X\right)$
is an isomorphism. Definition of S^{e} and (11) complete the proof.

We are now ready to provide one of our main theorems.
Theorem 2.4 Let X be an S-module, then there exists a long exact sequence

$$
\begin{aligned}
& 0 \rightarrow H^{0}(S, X) \xrightarrow{j} H^{0}\left(A, X_{A A}\right) \oplus H^{0}\left(B, X_{B B}\right) \xrightarrow{\delta^{0}} \\
& \mathrm{Ext}_{A \otimes B^{0}}^{o p}, R \\
& \left(M \otimes_{B} N, X_{A B}\right) \\
& \quad \pi^{0} H^{1}(S, X) \xrightarrow{j^{1}} H^{1}\left(A, X_{A A}\right) \oplus H^{1}\left(B, X_{B B} \xrightarrow{\delta^{1}}\right. \\
& \mathrm{Ext}_{A \otimes B^{1}}{ }^{o p}, R \\
& \left(M \otimes_{B} N, X_{A B}\right) \rightarrow \ldots
\end{aligned}
$$

where $E x t_{A \otimes B^{o p}, R}^{*}\left(M \otimes N, X_{A B}\right)$ denote the Ext groups of the $A \otimes_{B} B^{\mu \rho}$-module $M \otimes_{B} N$, relative to the family of the $A \otimes_{B} B^{o p}$-epimorphisms which splits as R-morphisms.

Proof. Let $\left(S^{*+2}, b_{*}^{\prime}\right)$ be the canonical resolution of S and $\left(X_{*}, b_{*}^{\prime}\right),\left(X_{*}^{A}, b_{*}^{\prime}\right),\left(X_{*}^{b}, b_{*}^{\prime}\right),\left(Y_{*}^{A}, b_{*}^{\prime}\right),\left(Y_{*}^{B}, b_{*}^{\prime}\right)$ be as before. By Lemma 2.1,

$$
\begin{aligned}
& 0 \rightarrow\left(X_{*}^{A}, b_{*}^{\prime}\right) \oplus\left(Y_{*}^{A}, b_{*}^{\prime}\right) \oplus\left(X_{*}^{B}, b_{*}^{\prime}\right) \oplus\left(Y_{*}^{B}, b_{*}^{\prime}\right) \\
& \rightarrow\left(X_{*}, b_{*}^{\prime}\right) \rightarrow\left(\frac{X_{*}}{X_{*}^{A} \oplus Y_{*}^{A} \oplus X_{*}^{B} \oplus Y_{*}^{B}}, b_{*}^{\prime}\right) \rightarrow 0,
\end{aligned}
$$

implies the long exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathrm{Ext}_{S^{e}, R}^{0}(S, X) \rightarrow \mathrm{Ext}_{S^{e}, R}^{0}\left(1_{A} S \oplus S 1_{B}, X\right) \\
\rightarrow & \mathrm{Ext}_{S^{e}, R}^{0}\left(M \otimes_{B} N, X\right) \rightarrow \mathrm{Ext}_{S^{e}, R}^{1}(S, X) \\
& \rightarrow \mathrm{Ext}_{S^{e}, R}^{1}\left(1_{A} \oplus S 1_{B}, X\right) \rightarrow \mathrm{Ext}_{S^{e}, R}^{1}\left(M \otimes_{B} N, X\right) \rightarrow \ldots
\end{aligned}
$$

Now, it suffices to apply Lemmas 2.2 and 2.3.
Let $\pi: S \rightarrow B$ be an ring morphism defined by
$\pi\left(\left(\begin{array}{ll}a & m \\ n & b\end{array}\right)\right)=b$,
for all $\left(\begin{array}{ll}a & m \\ n & b\end{array}\right) \in S$. Let B_{S} denote the ring B considered as an S-module via π. Also, $\left(X_{a}^{A}, b_{a}^{\prime}\right),\left(X_{a}^{B}, b_{a}^{\prime}\right),\left(Y_{a}^{A}, b_{a}^{\prime}\right)$ and $\left(Y_{a}^{B}, b_{\mathrm{s}}^{\prime}\right)$ are projective resolutions. Now, by this notifications we have the next result, that has an important role for proving Theorem 2.7 and it's proof is obvious.

Lemma 2.5 Let $\mu: \frac{X_{0}}{X_{0}^{A} \oplus Y_{0}^{A}} \rightarrow B_{S}$ be the map defined by
$\mu\left(b_{0} \otimes b_{1}+m \otimes b+n \otimes a\right)=b_{0} b_{1}$,
for $b, b_{0}, b_{1} \in B, a \in A, m \in M$ and $n \in N$. The complex

$$
\begin{equation*}
B_{S} \stackrel{\mu}{\leftarrow} \frac{X_{0}}{X_{0}^{A} \oplus Y_{0}^{A}} \stackrel{b_{1}^{\prime}}{\leftarrow} \frac{X_{1}}{X_{1}^{A} \oplus Y_{1}^{A}} \stackrel{b_{2}^{\prime}}{\leftarrow} \frac{X_{2}}{X_{2}^{A} \oplus Y_{2}^{A}} \stackrel{b_{3}^{\prime}}{\leftarrow \ldots} \tag{12}
\end{equation*}
$$

is a relative projective resolution of B_{s} as an S-module. A contracting homotopy of (12) as a complex of R-modules is the family

$$
\begin{aligned}
& \sigma_{0}: B_{S} \rightarrow \frac{X_{0}}{X_{0}^{A} \oplus Y_{0}^{A}} \text { and } \sigma_{n+1}: \frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A}} \rightarrow \\
& \frac{X_{n+1}^{A}}{X_{n+1}^{A} \oplus Y_{n+1}^{A}}(n \geq 0),
\end{aligned}
$$

defined by:
$\sigma_{n+1}\left(x_{0} \otimes \ldots \otimes x_{n}\right)=1_{A} \otimes x_{0} \otimes \ldots \otimes x_{n}$.

Lemma 2.6 Let X be an S-module, then

$$
\operatorname{Hom}_{S \otimes_{R} B^{o p}}\left(\left(\frac{X_{*}}{X_{*}^{A} \oplus Y_{*}^{A}}, b_{*}^{\prime}\right), X 1_{B}\right) \cong
$$

$$
\operatorname{Hom}_{S^{e}}\left(\left(\frac{X_{*}}{X_{*}^{A} \oplus Y_{*}^{A}}, b_{*}^{\prime}\right), X\right)
$$

Proof. Since, for every $f \in \operatorname{Hom}_{S^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A}}, X\right)$,
üüй̈̈ü $\otimes \ldots \otimes_{n+1}$

$$
{ }_{0} \otimes \ldots \otimes_{n+1}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \in \quad B
$$

the canonical inclusion

$$
\operatorname{Hom}_{S^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A}}, X 1_{B}\right) \rightarrow \operatorname{Hom}_{S^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A}}, X\right)
$$

is an isomorphism. To end the proof it suffices to observe that

$$
\begin{aligned}
& \operatorname{Hom}_{S \otimes_{R} B^{o p}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A}}, X 1_{B}\right) \cong \\
& \operatorname{Hom}_{S^{e}}\left(\frac{X_{n}}{X_{n}^{A} \oplus Y_{n}^{A}}, X 1_{B}\right)
\end{aligned}
$$

By the above lemmas, we are ready to prove the following.
Theorem 2.7 Let X be an S-module, then there exists a long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}_{S \otimes_{R} B^{o p}, R}^{0}\left(B_{S}, X 1_{B}\right) \rightarrow H^{0}(S, X) \rightarrow H^{0}\left(A, X_{A A}\right) \\
& \rightarrow \operatorname{Ext}_{S \otimes_{R} B^{o p}, R}^{1}\left(B_{S}, X 1_{B}\right) \rightarrow H^{1}(S, X) \rightarrow H^{1}\left(A, X_{A A}\right) \rightarrow \ldots
\end{aligned}
$$

Proof. By Lemma 2.5,

$$
0 \rightarrow\left(X_{*}^{A} \oplus Y_{*}^{A}, b_{*}^{\prime}\right) \rightarrow\left(X_{*}, b_{*}^{\prime}\right) \rightarrow\left(\frac{X_{*}}{X_{*}^{A} \oplus Y_{*}^{A}}, b_{*}^{\prime}\right) \rightarrow 0
$$

leads to the long exact sequance
$0 \rightarrow \mathrm{Ex} t_{S^{e}, R}^{0}\left(B_{S}, X\right) \rightarrow \mathrm{Ext} t_{S^{e}, R}^{0}(S, X) \rightarrow \mathrm{Ext}_{S^{e}, R}^{0}\left(1_{A} S, X\right)$
$\rightarrow \mathrm{Ext}{ }_{S^{e}, R}^{1}\left(B_{S}, X\right) \rightarrow \mathrm{Ext}_{S^{e}{ }_{, R}}^{1}(S, X) \rightarrow \mathrm{Ext}{ }_{S^{e}, R}^{1}\left(1_{A} S, X\right) \rightarrow \ldots$
Now, apply Lemmas 2.2 and 2.6.
Example 2.8 Let $S=\left[\begin{array}{cc}A & M \\ N & B\end{array}\right]$ where $M \otimes_{B} N=0=N$ $\otimes_{B} M$. Now, we compare $H^{n}(S, X)$ where X is an S-module. Since, $M \otimes N=0$, thus $E x t_{A \otimes B^{o p}, R}^{i}\left(M \otimes N, X_{A B}\right)=0$.

Therefore, by Theorem 2.4, we have
$H^{n}(S, X) \cong H^{n}\left(A, X_{A A}\right) \oplus H^{n}\left(B, X_{B B}\right)$.
Also,
$H^{n}(S, S) \cong H^{n}(A, A) \oplus H^{n}(B, B)$.
Example 2.9 In example 2.8, we put $M=\mathbb{Z}_{m}$ and $N=\mathbb{Z}_{n}$
where $(\mathrm{m}, \mathrm{n})=1$ and $A=B=\mathbb{Z}$. Then
$H^{n}(S, S) \cong H^{n}(\mathbb{Z}, \mathbb{Z}) \oplus H^{n}(\mathbb{Z}, \mathbb{Z})=0$.

REFERENCES

[1] Brodmann MP and Sharp RY (1998) Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press.
[2] Du Y., Wang Y. Lie derivations of generalized matrix algebras. Linear Alg. Appl.,2012, 437, 2719-2726.
[3] Cheung W. S. Commuting maps of triangular algebras. J. London Math. Soc., 2001, 63(1), 117-127.
[4] Cheung W. S. Lie derivations of triangular algebras. Linear Multilinear Alg., 2003, 51(3), 299-310.
[5] Christensen E. Derivations of nest algebras. Math. Ann., 1977, 229,155-161.
[6] Coelho S. P., Milies C. P. Derivations of upper triangular matrix rings. Linear Alg. Appl., 1993, 187, 263-267.
[7] Guccione J. A., Guccione J. J. Hochschild cohomology of triangular matrix algebras.http://arxiv.org/abs/math/0104068v2.
[8] Huneke C. Problems on Local cohomology, in: Free Resolution in Commutative Alg. and Alg. Geometry (Sundance, Utah, 1990) Mathematics, 2, Jones and Barlett,pp.93-108. Research Notes in Mathematics, 2, Jones and Barlett Publisher, Boston, MA, (1992).
[9] Ji P., Qi W. Characterizations of Lie derivations of triangular algebras. Linear Alg. Appl., 2011, 435, 1137-1146.
[10] Rotman J. An introduction to homological algebra. Second Ed., New York, Speringer-verlag, 2009.
[11] Xiao Z. K., Wei F. Commuting mappings of generalized matrix algebras, Linear Alg. Appl., 2010, 433, 2178-2197.

> How to cite this article: Oroozaki SNS, Hassani F. On Hochschild Cohomology of Generalized Matrix Algebras. Int J Sci Stud $2017 ; 5(4): 740-744$.

Source of Support: Nil, Conflict of Interest: None declared.

[^0]: Corresponding Author: Feysal Hassani, Department of Mathematics, Payame Noor University,Tehran, Iran.
 E-mail: feysal.hassani.pnu@gmail.com

[^1]: $0 \rightarrow M \rightarrow P_{e} \rightarrow \mathrm{R} \rightarrow 0$
 is S, S^{e}, and $S \otimes A^{o p}$-exact.

